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Figure 1: After computing signed distance field (SDF) of
the Bust of Max Planck mesh Γ with voxel resolution 152×
176 × 161 an evolution of surface F (with initial condition
F 0 as a geodesic icosahedron with subdivision level 3) is run
with Nt = 150 time steps of length τ = 0.01.

Methods based on diffusion often produce natural-
looking shapes. Considering an obstacle for such process
we simulate objects wrapped by a surface foil. We pro-
vide an outline of a shrink-wrapping algorithm of trian-
gular meshes wrapping onto general polygonal meshes,
with a sequence of pre-processing steps for computing
the distance field.

Let F be a parametrization of an evolving surface in
R3. Our model is based on a non-linear parabolic initial
value problem

∂tF = ε∆gFF + ηN + vT , F (·, 0) = F 0, (1)
where ∆gF is the Laplace-Beltrami operator with re-
spect to the current surface metric gF , N is the outward-
pointing unit normal to F , and ε, η are control functions
for the two main components of evolution in the normal
direction [2]:

ε(d) := C1

(
1− e−d2/C2

)
, C1, C2 > 0, (2)

η(d) := Cd
(
(−∇d ·N)−D

√
1− (∇d ·N)2

)
,

C > 0, D ≥ 0, (3)
where d is the distance field of input surface Γ ⊂ R3. vT
represents tangential movement.

The discrete model of surface evolution uses a semi-
implicit finite 2-volume scheme of (1), and is therefore
subject to stability constraints. Our theoretical contri-
bution is a heuristic based on time step size τ and finite
2-volume measures µ(V ) of an evolving mesh with dif-
ferent levels of recursive 4-to-1 edge subdivision.

Under the simplified assumption with ε ≡ 1, η ≡ 0
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we need to scale the evolving surface by factor
φ = 3

√
τ/µr(V ), (4)

where µr(V ) is the mean measure of co volumes V of
an expected geodesic icosahedron F r with radius r > 0
at stopping time ts > 0. Since individual areas of finite
volume elements V covering F r are approximately equal,
we put

µr(V ) = 4πr2/Ns
V ,

where
Ns

V =
(
N0

E(4s − 1) + 3N0
V

)
/3. (5)

Lagrangian evolution is first tested against ground truth
with three numerical experiments for convergence rate,
as in [3]. Likewise, model (1) is tested on the experimen-
tal data set of polygonal meshes for stability evaluation
with scaling factor (4) and afterwards for final results
[1] (see Fig. 2).

Figure 2: The condition number κ(J) of the Jacobian J of
map Conv({(0, 0), (1, 0), (0, 1)}) 7→ Conv({vu,v0 , vu,v1 , vu,v2 })
(from unit triangle to the plane representation of each mesh
triangle) evaluated at mesh vertices of a shrink-wrapped
Stanford bunny. A 2-volume V around a mesh vertex is shown
in green.
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	Pocitacova grafika
	Martin Čavarga, Andrej Ferko: Shrink-Wrapping of Mesh Surfaces via Lagrangian Evolution


