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Abstract. Subdivision surfaces are commonly used to simulate addi-
tional detail for mesh objects on the scene. For certain problems, such
as Lagrangian shrink-wrapping, determining the number of vertices
of the subdivision surface is crucial for estimating vertex density.
Furthermore, gauging the number of mesh primitives relative to the
subdivision level becomes useful for memory preallocation during the
surface creation process. We propose a general method for estimating
these values using solutions to simple systems recurrence equations.
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1 Introduction

Subdivision surfaces, created by refining a base cage surface, are used
in geometric design [7] and real-time rendering [8]. This paper presents
counting formulas for estimating mesh primitive (vertices, edges, faces)
counts based on the connectivity of the base mesh and the recursive prop-
erties of subdivision (see Fig. 1 (a)). These formulas help in computing
vertex density [6] and in efficient memory allocation for subdivision sur-
face construction.

Fig. 1: (a) The amount of mesh vertices Ns
V and edges Ns

E with respect
to subdivision level s = 0, 1... depends on the initial connectivityM0. (b)
Three snapshots of the evolution of an icosphere with subdivision level
s = 3 under an advection-diffusion shrink-wrapping model introduced in
[6]. The detail shows a chosen mesh vertex Fi (red) with its corresponding
barycentric Laplacian co-volume Vi (blue).
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2 Motivation

According to Section 2.4 of [6] a semi-implicit formulation of a parabolic
advection-diffusion evolution applied to manifold mesh surfaces, requires
us to ensure that the time step size τ > 0 is close to the value of mean
area µ(V ) of a barycentric Laplacian co-volume V surrounding each mesh
vertex (see Fig. 1). The most straightforward approach is to compute a
2-dimensional scaling factor

ϕ =

√
τ

µr(V )
, where µr(V ) =

4πr2

Ns
V

. (1)

This assumes a spherical evolving surface with uniform vertex distribu-
tion. To achieve stability and return to the original scale, the mesh is
scaled using ϕ and then reverted with 1/ϕ.

For a surface formed by s > 0 subdivision steps, a counting formula
evaluates Ns

V from the recursive nature of the subdivision operation. A
typical example of such surface is an icosphere which is a form of spherical
geodesic grid used as a discrete computational domain for applications
such as climate modeling [13] and global data visualization [16]. Starting
from initial vertex count of an icosahedron N0

V = 12 we have

N1
V = 42, N2

V = 162, N3
V = 642, N4

V = 2562, N5
V = 10242, ... .

Other, more general surfaces with different initial valences for each vertex,
would need individual evaluation, which is clearly impractical.

3 Related work

In acoustic simulations Alarcão et al. [2] subdivided an icosahedron’s radi-
ation pattern for ray direction determination, with formulas for counting
vertices and faces:

Ns
V = 5

(
22s − 2s + 2

2s∑
m=1

m

)
+ 2 , Ns

F = 20 · 4s. (2)

[12] discusses the OLAM geodesic grid construction, beginning with an
icosahedron inscribed in the earth. Each triangle subdivides into N2

smaller triangles, introducing 30(N2 − 1) new edges and 10(N2 − 1) ver-
tices. This approach differs from the icosahedron counting formula (2) as
it does not consider recursion and solely focuses on 4:1 triangle subdivi-
sions.

Both techniques, however, only handle a single type of triangular base
surface under a 4:1 triangle subdivision.
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4 Manifold mesh subdivision theory
Polygonal meshes are perhaps the most widely adopted representation
in the realm of 3D data storage and display. We evaluated the formal
definitions of meshes in the prominent literature from the field, such as
Botsch et al. [3], and Hoppe et al. [10], and formulated the following
definition:

Definition 4.1. Let K be an abstract simplicial complex containing at
most 2-simplices (triangles). Let V = {v1, ...,vNV

} ⊂ E3 a finite set
of points referred to as the vertex set. Then (K, V ) is called a triangle
mesh. A polygon is a union of 2-simplices (triangles) each of which is edge-
adjacent to another triangle1. Let M ⊇ K possibly contain polygons in
addition to triangles in K. Pair (M, V ) is then called a polygonal mesh.

Fig. 2: Each tri-
angle has 3 half-
edges, and each
interior edge has
two opposing half-
edges, and there is
a single half-edge
for each boundary
edge.

A pure point-set surface image M ⊂ E3 of the
mesh is known as the geometric realization of (M, V ).
This notion is explained in more detail in Section 2
of [10].

Meshes approximating smooth surfaces require
distinguishing between general simplicial realizations
and those approximating smooth surfaces. Hence,
we distinguish between manifold and non-manifold
meshes.

Definition 4.2. Let X be a topological 2-manifold,
and F : X → E3 its immersion. A polygonal mesh
(M, V ) is then said to be a manifold mesh if M =
F [X]. If the geometric realizationM does not have
a boundary ∂M, we say that (M, V ) is watertight.

A 2-manifold mesh is sometimes referred to as a
surface mesh for which there exists an efficient data structure [15] which
uses ordered 1-simplices - half-edges (see Fig.2).

Now define a map M → M∗ referred to as a tessellation-changing
operation onM, such thatM∗∩M ̸= ∅ whereM∗ is also an extension of
the resulting simplicial complex K∗ containing modified polygons forming
a polygonal mesh (M∗, V ∗). An example of such operation is evidently
subdivision:

Definition 4.3. Let T = {i0, i1, i2} ∈ M be a triangle in a surface
mesh M. A tessellation-changing operation Σ : M → M∗ which in-
troduces new 0-simplices (vertices) {i∗01}, {i∗12}, and {i∗20} per each edge

1For example, triangles T0 = {i, j, k} and T1 = {j, i, l} are edge-adjacent sharing
edge {i, j} ∈ K.
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{i0, i1}, {i1, i2}, {i2, i0} ∈ M, and replaces T with four triangles:

T0 = {i0, i∗01, i∗20}, T1 = {i∗20, i∗01, i∗12},
T2 = {i∗01, i1, i∗12}, T3 = {i∗20, i∗12, i2},

(3)

is called a 4:1 triangle subdivision on M. If the change in connectivity
information (for triangles and edges) also propagates to all three possible
edge-neighboring triangles T (01), T (12), and T (20) of T , we say that Σ is
compatible with T (01), T (12), or T (20). If Σ is targeting all triangles ofM,
and compatible with respect to all neighbors of all triangles, we say that
Σ is globally-compatible.

A subdivision of T compatible with respect to T (e), e ∈ {01, 12, 20}
provided that no neighbors of T (e) are also subdivided yields two edge-

adjacent triangles T (e) 7→ T
(e)
0 , T

(e)
1 sharing vertex {i∗e} ∈ M∗. For the

purposes of this paper, however, we only consider globally-compatible
subdivisions, that is: if T subdivides into T0, T1, T2, and T3, so do its edge
neighbors T (e), e ∈ {01, 12, 20} if they exist.

An approximating2 variant of such subdivision is a scheme proposed
by Loop [11]. An interpolating variant would be, for example, a simple
spherical projection scheme

v∗
e ← projS2(v

∗
e) = v∗

e/∥v∗
e∥. (4)

for constructing an icosphere.
This is, of course, not the only way to subdivide triangle faces inM.

If we also add an interior vertex {i∗012} = {i∗} ∈ M∗ subdividing T into
three quadrilaterals

Q0 = {i0, i∗01, i∗, i∗20}, Q1 = {i∗01, i1, i∗12, i∗}, Q2 = {i∗, i∗12, i2, i∗20}, (5)

we formulate the combinatorial Catmull-Clark subdivision variant for tri-
angles with its approximating scheme described in [4] and [5]. This scheme
can be extended to subdivide an arbitrary mesh (m ≥ 3)-gon with the
resulting quads Q0, ..., Qm−1 sharing the inserted interior vertex {i∗}. For
example, if m = 4, we get

{i0, i∗01, i∗, i∗30}, {i∗01, i1, i∗12, i∗}, {i∗, i∗12, i2, i∗13}, {i∗30, i∗, i∗13, i3}. (6)

The subdivision operation can, of course, be repeated s > 0 times

where we write Σs =

s-times︷ ︸︸ ︷
Σ ◦ ... ◦ Σ. Infinite application of subdivision then

leads to a limit surface.

2Such that ({i},vi) ̸= Σ({i},vi) because of the movement of positions vi of the
original vertices {i} ∈ M under Σ.
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5 Counting formulas

Recall that in Section 2, we wanted to evaluate the number of mesh ver-
tices NV as a function of the subdivision level. This number is closely
related to both the count of edges NE and faces NF through the Euler
polyhedron formula [9]. In this section, we utilize all the tools at our dis-
posal to prove such ”counting formulas” for different types of subdivision.

Theorem 5.1. LetMs = Σs(M), s ∈ N+
0 be a watertight triangle surface

mesh, and let Σ : Ms−1 7→ Ms, s > 0 be a globally-compatible 4 : 1
subdivision inserting a single vertex for each edge e ∈ Ms. Let Ns

V , N
s
E,

and Ns
F denote the number of vertices, edges, and faces ofMs respectively.

Then given starting counts N0
V , N

0
E, and N0

F we have:

Ns
E = 4sN0

E , Ns
F = 4sN0

F , (7)

Ns
V =

1

3

(
N0

E(4
s − 1) + 3N0

V

)
. (8)

Proof. First, we consider that Σ subdivides each face into 4 faces, that is
Ns

F = 4Ns−1
F which yields Ns

F = 4sN0
F for any s ∈ N. However, since we

insert a new vertex for each existing edge, the number of added vertices
in step s will be equal to edge count Ns−1

E . This gives rise to a system of
recurrence equations:

Ns
V = Ns−1

V +Ns−1
E ,

Ns
E = 4Ns−1

E .
(9)

Before solving this system, we need to verify that under Σ the number of
edges inMs−1 increases to 4 times the count in previous step (the second
equation for NE).

Since for a triangle mesh without boundary, the total number of half-
edges is:

NH = 2NE = 3NF , (10)

and subdivision from Definition 4.3 updates the number of edge by dou-
bling the amount of existing edges, and adding 3 new interior edges per
each triangle, we have

Ns
E = 2Ns−1

E + 3Ns−1
F = 4Ns−1

E ,

using (10).

After solving (9) using the s-th power of the matrix of the system, we
get Ns

E = 4sN0
E and (8).
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Fig. 3: (a) subdivid-
ing interior (Theorem
5.1) (b) and bound-
ary triangles (Theo-
rem 5.2).

The fact that the proof of the above theorem
depends only on identity (10) yields:

Corollary 5.1. The statement of Theorem 5.1 is
independent from the genus of the surface mesh.

Introducing boundary violates idenity (10)
which must be replaced by

NH = 2NIE +NBE = 3NF , (11)

where NE = NIE+NBE with interior and bound-
ary edge counts NIE , NBE respectively.

Theorem 5.2. Let Ms = Σs(M), s ∈ N+
0 be

a possibly non-watertight triangle surface mesh,
and let Σ : Ms−1 7→ Ms, s > 0 be a globally-
compatible 4 : 1 subdivision inserting a single ver-
tex for each edge e ∈ Ms. Let Ns

V denote the
number of vertices, Ns

IE the number of interior
edges, and Ns

BE the number of boundary edges of
Ms. Then:

Ns
V =

1

6
(4s − 4 + 3× 2s)N0

BE +
1

3
(4s − 1)N0

IE +N0
V ,

Ns
IE = 2s−1

(
(2s − 1)N0

BE + 2s+1N0
IE

)
,

Ns
BE = 2sN0

BE .

(12)

Proof. Recurrence relation (9) needs to be adjusted, so that it handles
edge vertex insertion differently for interior, and for boundary edges.
Σ applied to boundary edges simply doubles their amount Ns

BE . For
counting interior edges Ns

IE requires us to use the generic identity Ns
E =

2Ns−1
E + 3Ns−1

F combined with (11) which yields the second equation in:

Ns
V = Ns−1

V +Ns−1
IE +Ns−1

BE ,

Ns
IE = 4Ns−1

IE +Ns−1
BE ,

Ns
BE = 2Ns−1

BE .

(13)

(12) is then the solution of system (13).

Theorem 5.3. Let Ms = Σs(M), s ∈ N+
0 be a watertight quad surface

mesh, and let Σ : Ms−1 7→ Ms, s > 0 be a globally-compatible 4 : 1
subdivision inserting a single vertex for each edge e ∈ Ms, and a vertex
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for each face Q ∈Ms, according to connectivity scheme (6). Then

Ns
E = 2s(N0

E + 2(2s − 1)),

Ns
F = 4sN0

F ,

Ns
V = (2s − 1)2N0

F + (2s − 1)N0
E +N0

V .

(14)

Proof. Similarly to the derivation of previous recurrence formulas, we con-
clude that the amount of pre-existing edges doubles during subdivision,
and we add four additional interior edges connecting from the newly in-
serted edge vertices {i∗e}, e ∈ {01, 12, 23, 30} to the new interior vertex
{i∗}. Analogously, the newly inserted vertices {i∗01}, {i∗12}, {i∗23}, {i∗30},
and {i∗} contribute to the updated vertex count:

Ns
V = Ns−1

V +Ns−1
E +Ns−1

F ,

Ns
E = 2Ns−1

E + 4Ns−1
F ,

Ns
F = 4Ns−1

F .

(15)

Solving (15) then yields (14).

6 Tests and performance improvement
We tested the simplest triangle case in Theorem 5.1 for an icosphere,
and additional watertight input meshes. We also verified the validity of
counting formulas (8) for tori with higher genus (see Fig. 4 (b)). An
icosphere with two holes (see Fig. 1 (a) and Fig. 4 (a)) was used to verify
Theorem 5.2. Moreover, the utility of theorems in Section 5 was tested
via time measurement speedup for Loop subdivision on dataset in 4 (c)
while using preallocated memory with the a priori known mesh vertex,
edge, and face counts (see Table 1).

Armadillo Blub Bunny Max Planck 3Holes Rocker Arm
0.85% 3.61% 2.08% 2.08% 2.06% 2.08%

Table 1: Speedup percentages for various test meshes.

s 1 2 3 4 5 6
Speedup [%] -94.43 -31.23 -7.23 9.13 15.15 12.83

Table 2: Recursive vs preallocated icosphere construction speedup with
respect to subdivision level s.

Evidently, the computation of new vertex positions in Loop subdivi-
sion [11] limits the potential gain from preallocation. For this reason we
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Fig. 4: Three different tests carried out on mesh datasets: (a) icosphere
with boundary, (b) testing counting formulas for arbitrary genus, and
measuring preallocation performance on standard datasets (c).

performed another set of tests for an icosphere subdivision scheme (4). We
tried to mitigate the expensive vertex position computation by performing
simple barycentric interpolation within base triangles of an icosahedron
followed by more complex connectivity construction. As can be seen in
Table 2, we sacrifice a lot of computation time to the construction of con-
nectivity up to subdivision level s = 3 after which we start to save as
much as 15 % of the time.

Note that for the test mesh collection (c), we perfomed isotropic remesh-
ing [1] to obtain better vertex distribution. This step was done in Mesh-
Lab�by the Visual Computing Lab team from ISTI, Pisa, and the final
3D visualizations were rendered in ParaView�by the Kitware team.

7 Conclusion
Originating from the motivation for vertex counting formula, specifically
for 4:1 subdivision aimed at stabilizing the semi-implicit formulation of
Lagrangian evolution (refer to Section 2), this paper derives and justifies
the utility of counting formulas for mesh vertices, edges, and faces under
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recursive face subdivision operations (see Section 4). Theorems in Section
5 formulate the ”counting formulas” for triangle 4:1 subdivision for meshes
with arbitrary genus, and extend the statement even for meshes with
boundary loops (Theorem 5.2), and for Catmull-Clark scheme on quad
meshes (Theorem 5.3).

We validate the theoretical results with tests in Section 6 including
the measurement for performance improvement under memory preallo-
cation which yields up to 3.6% speedup for Loop subdivision and 15%
acceleration in parametric icosphere construction.
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