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Abstract

The generic irregularity of mesh representation allows for a wide variety of configurations, enabling the

development of various algorithms for their processing. Our focus is on triangle meshes that tessellate

surfaces representing boundaries of solid objects, covering methods for extracting volumetric data from

meshes and using this spatial data to reconstruct optimized meshes from them. The work also includes the

stabilization of the Lagrangian shrink-wrapping method for wrapping target mesh geometries with arbitrary

topology and the use of progressive meshes for mesh simplification, view-dependent mesh optimization, and

mesh compression used in state-of-the-art methods for geometry optimization, for example, in modern game

engines.
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Introduction

In the realm of 3D data storage and display, polygonal meshes are a widely adopted representation. Meshes

are, of course, not the only way of representing spatial data, but perhaps their most alluring aspect is that

despite containing a finite amount of information, the irregularity of their generic forms allows for a wide

variety of configurations, and thus requires all kinds of algorithms utilized for their processing. In this

thesis, we orient ourselves on the mesh representations, particularly triangle meshes tessellating surfaces

representing boundaries of solid objects. In particular, we dive deeper into methods of extracting volumetric

data from meshes, as well as using this spatial data to reconstruct optimized meshes from them once again.

We begin with a theoretical chapter on three main types of geometric representations: meshes, functional

representations, voxel fields. This chapter introduces a deeper mathematical language with focus on mesh

representations, and their role in conversion to or from image-based or fully-implicit data. We also include

some practical results. Furthermore, we prove a result for estimating the number of mesh primitives after

subdivision which is then used as a foundation for stabilizing the numerical method used in the following

chapter.

The next chapter discusses Lagrangian shrink-wrapping and its practical implementation for wrapping

target mesh geometries. This method can also be extended to point cloud target data. Not only do we

stabilize the method for shrink-wrapped target meshes with arbitrary topology, but also allow for using a

starting surface from an isosurface of the signed distance field to the target surface.

We follow by providing an overview of mesh simplification techniques using progressive meshes. We

discuss how these techniques are used for view-dependent mesh optimization and mesh compression. Addi-

tionally, we mention the current state-of-the-art methods of geometry optimization for modern game engines.

Figure 1: Triangle mesh (left), and volumetric (right) renderings of the same scene [75].
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Chapter 1

Representations of Geometric Data

Because of their relatively low memory requirements, point cloud and surface representations of geometric

objects comprised the majority of 3D models across virtual environments throughout history. With the

advancements in data storage and processing speed, other general forms became viable, such as voxel or

fully functional representations. In the domain of engineering applications, such as Finite Element Method

(FEM), there is demand for discrete versions of real-world objects where values of physical quantities are

computed primarily at node (vertex) elements, and secondarily at edges, faces or volumes. Purely visual

applications, on the other hand, require only data required for rendering the objects as shapes or intensity

values on the screen.

In this chapter, we formulate mathematical descriptions of geometric representations and processing /

conversion operations on them, essential for the main results of this work. Although the range of possible

representations in various data structures is, of course, much wider than the chosen mathematical description,

formal definition becomes crucial when securing correct conversion among different representations, namely

because of compatibility between frameworks as well as changing requirements for memory consumption,

access and processing speeds.

For all intents and purposes of this work, geometric objects are defined in ambient n-dimensional Eu-

clidean space En, with n = 3 for most cases. This implies the use of real-valued vectors from vector space

Rn equipped with standard dot product · or ⟨·, ·⟩, and also for n = 3 the cross product × between them. The

aforementioned spaces are isomorphic, therefore we distinguish between vectors vRn (defined at the origin

0 ∈ Rn) and their analogues defined at points pEn ∈ En only by being able to apply inner and cross product

on the former on top of standard addition and scalar multiplication.

Naturally, the dot product induces the standard Euclidean norm ∥ · ∥, and when combined with the cross

product ∥ · × · ∥ also an area form, or alternatively a volume form ⟨·, · × ·⟩. Vectors v ∈ Rn are, of course,

computed from points p ∈ En, for example surface normals, velocities, acceleration, field gradients etc. One

can easily proceed to define tensors at points p ∈ En in a similar fashion.

Figure 1.1: Three key types of geometry representations in E3 used in this thesis: (a) mesh, color plots of (b) scalar

values sampled at a voxel field, and (c) a functional representation (FRep).
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1.1 Mesh Geometry

In general, we distinguish between two key approaches to defining the same type of entity - a polyhedral

mesh:

� combinatorial - description in terms of vertex identifiers: Vcomb = {1, ..., NV } (indices from N or Z or

any other identifying type) accompanied by connectivity information, that is: a subset of the power

set 2Vcomb ,

� geometric - mapping vertex identifiers Vcomb to ambient space as a point cloud : V = {v1, ...,vNV
} ⊂ En,

and handling their convex hulls (edges, faces, volumes).

It is often important to maintain the distinction between connectivity via vertex identifiers, and the cor-

responding geometry in ambient space. The former (combinatorial) approach will be important for the

definition of tessellation-changing operations such as flip, split, and collapse. These produce new combinato-

rial structures from given input. The geometric approach becomes crucial when simulating processes on the

mesh geometry in space, for example, in Laplacian fairing (see Chapter 4 in [11]) which evaluates a mesh

Laplacian for each vertex vi ∈ En, i = 1, ..., NV .

An experienced reader realizes that the combinatorial structure allows for a wide variety of potentially

degenerate configurations. The geometric approach, on the other hand, generally places a set of restrictions

on the representation itself. In practice, meshes have a substantial amount of degeneracies which need to be

repaired, in order to be prepared for geometric algorithms which accept ”well-behaved” surfaces or tessellated

volume regions as input.

1.1.1 Definitions of a Mesh

We start with the more straightforward combinatorial approach using finite sets of elements extended to

collections of their subsets:

Definition 1.1.1. (Abstract Simplicial Complex) Let Vcomb = {1, ..., NV } be the set of vertex identifiers.

A set K = {iK1 , ..., iKk } ⊂ V is referred to as an abstract k-simplex. A collection K ⊆ 2Vcomb is called an

abstract simplicial complex, if for every k-simplex K = {iK1 , ..., iKk } ∈ K, every (k− l)-simplex E ⊆ K is also

contained in K for l = 0, 1, ..., k. We say that Cl(S) = {E ∈ K : E ⊆ K ∈ K} is a closure of S ⊂ K. A star of

a k-simplex K ∈ K is defined as St(K) = {L ∈ K : K ⊂ L}. The set difference Cl(St(S))\St(Cl(S)) = Lk(S)
is referred to as the link of S ⊂ K.

The abstract representation of K may represent a wide range of finite datasets with some inherent

connectivity. As such they are not geometric, but can be mapped onto points in space:

Definition 1.1.2. (Topological and Geometric Realizations) Let K be an abstract simplicial complex with

vertices Vcomb = {1, ..., NV }. Map | · | : K → RNV such that |i| = êi, i = 1, ..., NV is called a topological

realization of K. Let ΦV : RNV → En, n ∈ N such that Φ(êi) = vi ∈ V = {v1, ...,vNV
} ⊂ En. Image

ΦV (|K|) is referred to as geometric realization of K.

Hoppe et al. [32], define a triangle mesh as a pair (K, V ) where the abstract simplicial complex K carries

combinatorial and vertex set V ⊂ E3, on the other hand, describes geometry. Additionally, the remaining

bridge towards surfaces or volume regions in Euclidean space which meshes are expected to discretize, needs

to be built using convex combinations. Hence, we delay the complete definition of a mesh until we describe

it from the geometric point of view, as what can essentially be summarized as: linear shapes glued together.

Definition 1.1.3. (Polytope, Simplex) Let {x1, ...,xN} be a finite set of points in En. We say that the

convex hull conv({x1, ...,xN}) is a polytope, and for N = k affinely independent points in En, k ≤ n we refer

to such polytope as a k-simplex.

3



k-simplices are k-dimensional generalizations of line segments, triangles and tetrahedra. They are the

simplest shape that can exist as a set of k-dimensional convex combinations of independent points

k∑
i=1

αixi ,

k∑
i=1

αi = 1 , αi ≥ 0, i = 1, ..., k.

Every k-simplex is also a k-polytope. As we connect simplices into a larger structure, we need a suitable

tool to express the dimensionality of their geometry.

Definition 1.1.4. (Hyperplane) Let Π = {x ∈ En : (x− x0) · n = 0} for some x0 ∈ En and normal vector

n ∈ Rn be a hyperplane, and Π+ = {x ∈ En : (x − x0) · n > 0}, Π− = {x ∈ En : (x − x0) · n < 0} the
open half-spaces bounded by hyperplane Π. Furthermore, we denote closed half-spaces as Π+ = Π∪Π+ and

Π− = Π ∪Π−.

Definition 1.1.5. (Supporting Hyperplane, Face) A hyperplane Π is said to be a supporting hyperplane to

a k-dimensional polytope K if Π∩K ̸= ∅ and K ⊂ Π+ or K ⊂ Π−. The non-empty intersection F = Π∩K
is referred to as a (k − l)-face (for l = 0, 1, ..., k) of K.

Figure 1.2: An exam-

ple (a) and a counter-

example (b) of a sim-

plical complex. Source:

Wikimedia Commons.

For a 3-dimensional polytope in E3, 2-faces are the 2-polytope walls, 1-faces are

edge line segments, and 0-faces are individual vertices. Of course, by definition there

are also two improper faces, namely the 3-polytope itself and ∅. By Definition 1.1.5,

we cover the entire hierarchy of points x ∈ K. From now on, we denote k ≤ n as

the maximum dimension of a face of a given polytope unless we say otherwise to

declutter notation.

Definition 1.1.6. (Simplicial Complex) A simplicial complex is a collection K of

simplices satisfying:

(1) Every (k − l)-face of K is also contained in K for l = 0, 1, ..., k.

(2) If K1 ∩K2 ̸= ∅ for K1,K2 ∈ K then K1 ∩K2 is a face of both K1 and K2.

Let St({v}) be a star of vertex v ∈ En, then N (v) = {{w} ∈ K : {w} ∈
∂St({v}) is a vertex in K} is referred to as the neighborhood of vertex v. Further-

more, for simplex S ∈ K set S =
⋃

F∈S F ⊂ En is said to be the union of S.

K can be described as a collection of simplices that might be linked by (k − l)-
faces from itself. This also allows for islands, that is: simplicial sub-complexes with

all simplices linked to at least one other simplex by a (k − l)-face.
However, the fully-geometric definition of a simplicial complex (Definition 1.1.6)

is too restrictive to cover meshes in practice. A counter-example seen in Fig. 1.2 (b)

depicts some intersections K1 ∩K2 ̸= ∅ which are not contained in the simplicial complex because they do

not form its (k − l)-faces and, in general, serve no practical purpose.

For such simplicial pseudo-complexes, with only some K1 ∩K2 ̸= ∅ forming faces of both K1 and K2,

for K1, K2 ∈ K, we refer to intersections satisfying this condition as connectivity. Likewise, faces K1 and

K2 are said to be connected or adjacent if they satisfy this condition. As a particular example, a vertex x

is said to be connected to K1, ...,Km if and only if it is a 0-face of each one of the (k − l)-faces.
Simplicial complexes contain only k-simplices for some k ∈ N, so for k = 2 we are limited to triangles

only. In order to define higher-order polygons we extend simplicial complexes by unions of adjacent simplices,

forming generalized k-dimensional polygons:

4



Figure 1.3: Examples of unions of triangles (2-simplices) from which only (a) is a polyhedron with respect to

Definition 1.1.7, (b) has a non-manifold edge, (c) contains a non-manifold point, and (d) is homeomorphic to an

annulus instead of a disk. Faux edges are shown as dotted lines.

Definition 1.1.7. (Polyhedron) Let K1, ...,Kr ∈ K be k-simplices. Union P =
⋃r

i=1Ki is called a k-

polyhedron if it is homeomorphic to closed k-disc Dk = Dk ∪ Sk−1.

Note that by Definition 1.1.7 only some polyhedra are (convex) polytopes. To ensure orientability and

reduce the amount of possible configurations, we impose limitations on manifoldness (for counter-examples

see Fig. 1.3 (b) and (c)) and restrict ourselves to sets homeomorphic to a closed disk (see Fig. 1.3 (d) for a

counter-example). (k − 1)-faces connecting individual simplices within a polyhedron are referred to as faux

(k− 1)-faces1 because they are used for triangulating polyhedra and are generally not counted among other

mesh (k − 1)-faces.

Definition 1.1.8. (Simplicial and Combinatorial Mesh) A simplicial k-dimensional mesh is a collectionM
of simplices with some K1∩K2 ̸= ∅ forming faces of both K1 and K2, for K1, K2 ∈M. Moreover, ifM also

contains polyhedra P , we say that it is a polyhedral mesh. A combinatorial mesh is an ordered pair (M, V )

where M is an abstract simplicial complex (according to Definition 1.1.1) which can also be extended by

polyhedral collections of k-simplices.

Figure 1.4: An ex-

ample of a boundary

representation (BRep)

mesh with some faces

Fi homeomorphic to an

annulus D2 \ D2
1>r>0.

To declutter notation, we will only use symbol M instead of the combinatorial

ordered pair (M, V ) accompanied by map ΦV determined by point set V ⊂ En and

also a topological realization. In fact, both the combinatorial and the geometric

approach overlap at ΦV (|M|) = M where M is the union of all k-simplices in

simplicialM.

Definition 1.1.9. (Triangulation, Tessellation) Let M be a (simplicial or combi-

natorial) k-mesh according to Definition 1.1.8. We refer to the subsetMk ⊂ M of

all k-simplices such that
⋃

K∈Mk
K =M as a triangulation of M, and analogously

we refer to a subsetMk ⊂ M of all k-polyhedra satisfying the same condition as a

tessellation2 of M.

In general, while using the geometric realizationM we are not restricted to flat3

(k − l)-faces only. The convex combinations can be replaced with arbitrary (k − l)-
dimensional interpolations (spline and/or other parametric patches), as it is, for

example, in piecewise-smooth surfaces of boundary representations (BReps). This

extends over to the choice of mappings under which manifolds such as discs D(k−l)

are immersed into En. We proceed by formally defining such maps extending to

closed discs.

Without loss of generality, let k ≤ n and P =
⋃r

i=1Ki be a k-dimensional polyhedron composed of

k-simplices Ki, then let ∂ be the boundary operator mapping points from the interior Int(P ) to boundary

1Faux edges are a term used in the VCG Library [38] for polygonal meshes used by MeshLab�.
2We chose this name instead of the proper alternative name polyhedrization for conciseness. In most literature, tesselations

are polyhedral partitions of a topological space.
3With all principal curvatures equal to zero for every one of their points.
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Figure 1.5: The appli-

cation of boundary opera-

tor ∂ on an oriented face

P with half edges H1, H2,

H3.

∂P . For a (k − 1)-sphere boundary, ∂ can, for example, map points x ̸= 0 from

disc Dk = Int(Sk−1) along a ray from origin 0 onto a point intersecting Sk−1. The

origin 0 can then be mapped to any particular point in Sk−1. Define F : X → En

with X being a k-manifold with boundary homeomorphic to Dk = Dk ∪ Sk−1.

This situation can then be described using the following commutative diagram:

P ∂P

Dk Sk−1

∂

F

∂

F .

Self intersections of Im(F ) can be avoided if F is an embedding into En instead of an immersion which only

guarantees that tangent space TF (x)P is k-dimensional for all x ∈ X.

Definition 1.1.10. (Pseudo-Polyhedral Mesh) A collectionM whose union (in the sense of Definition 1.1.6)

M is homeomorphic to the union of a polyhedral combinatorial mesh is said to be a pseudo-polyhedral mesh.

A polyhedral simplicial mesh is, of course, also a pseudo-polyhedral mesh.

Boundary representations (BReps), prevalent in CAD geometry (often as a result of constructive solid

operations), may also contain faces with interiors not homeomorphic to disks Dk, but rather annuli Dk \
D2

1>r>0 (see Fig. 1.4). The complexity increases if more holes are introduced into a face whose interior

becomes homeomorphic to an annulus with m holes: Dk \
⋃m

i=1 Dk
1>ri>0,xi

,x1, ...,xm ∈ Dk,Dk
1>ri>0,xi

⊂
Dk,Dk

1>ri>0,xi
∩ Dk

1>rj>0,xj
= ∅ for i ̸= j and i, j ∈ {1, ...,m}.

Figure 1.6: (a): A 2-manifold triangle mesh

with edge e having exactly 2 adjacent faces.

(b): A T-junction type non-manifold edge e

with 3 adjacent faces. (c): A non-manifold

edge e with 4 adjacent faces. (d): A non-

manifold vertex v with two adjacent stars

St({v})i, i = 1, 2.

The complexity of BReps reaches outside the scope of this

work, and we can safely assume we are working with polyhedral

meshes. Additionally, since non-manifold or non-orientable

polyhedral meshes are not used as input for our experiments,

we safely disregard degenerate differences between the combi-

natorial and geometric immersion-based representations.

1.1.2 Manifold Meshes

The polyhedral meshes defined in Section 1.1.1 still cover

a very broad range of possible geometric realizations. We are

often expected to use meshes which approximate smooth sur-

faces such as spheres, tori, cylinders, or smooth deformations

thereof. This means that there needs to be a distinction be-

tween mesh geometries restricted by the properties of a subset

of a simplicial complex, and those that approach smooth sur-

faces with finer resolution.

Definition 1.1.11. (Manifold Mesh) Let X be a topological

k-manifold, and F : X → En an immersion. Let M be a

polyhedral k-mesh. If F [X] = M then M is said to be a

manifold polyhedral mesh.

Recall that a k-manifold X is a topological space which can be locally described as a linear space Rk.

If there exist points in the geometric realizationM which cannot be uniquely mapped onto Rk (via charts)

the manifoldness assumption is violated. Such regions are, of course, some (k− l)-faces for l = 1, ..., k inM
which we refer to as non-manifold (k − l)-faces.
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Definition 1.1.12. (Non-Manifold Edges and Vertices) Let M be a polygonal 2-mesh. If edge e ∈ M is

shared by more than 2 faces P
(0)
e , P

(1)
e ..., P

(r)
e ∈ M, we refer to it as a non-manifold edge. Furthermore,

let v ∈ M be a vertex in M. If a star St({v}) of 0-face {v} is a union of more than one distinct stars:

St({v})i, i = 1, ..., r each with union St({v})i homeomorphic to a closed disc D2
, we say that v is a non-

manifold vertex inM.

The presence of non-manifold edges or vertices usually foretells issues in use, for example, in 3D-printing.

If the underlying printing framework cannot uniquely interpret what subset of ambient space should be an

interior of a solid objectM, the printer will either reject the model, or attempt to print it with significant

errors. A wide variety of mesh processing tools therefore offers procedures for healing non-manifold meshes.

The process of healing, of course, depends on the type and severity of a non-manifold artifact. Both non-

manifold edges and vertices can then be further categorized using orientation.

1.1.3 Orientation and Half-Edges

Figure 1.7: A 2-volume form dω ∈ [ϖ]

defined on K∪K′ ⊆ P ∪P ′ is induced by

1-forms ω on E = H = H ′ with opposite

signs.

Much like the choice of an orientation of a coordinate system for

describing a physical process, the choice of [ϖ] is fundamental to

the way the rest of a mesh-processing application is implemented.

The order in which vertices of a mesh are, for example, written to a

file is foundational precursor to the subsequent construction of the

mesh itself. In the practical context of most implementations, there

is preference for positive orientation with further use, for example, in

the right-hand rule to compute face normals from boundary vertices.

Since we interact with physical objects in the world from their exte-

rior, the agreed upon direction of normals to surfaces is, naturally,

outward-pointing. Hence converting all faces so that all their nor-

mals are outward-pointing is a practical preprocessing step available

for the users of a graphics or simulation application.

Definition 1.1.13. (Orientation) Let P be a k-polyhedron for k ≤
n, then the equivalence class [ϖ] of volume forms on P is called an

orientation of P .

Definition 1.1.14. (Mesh Orientation) LetM be a manifold mesh

without boundary in En then its orientation [ϖ] is defined if it is

the same for all P ∈M. [ϖ] is said to be positive, if normal vectors

n ∈ Rn to points x ∈ P ∈ M are outward-pointing toM∪ Int(M) whereM is the union ofM. IfM is a

manifold with boundary, it inherits orientation [ϖ] from ∂M.

Orientation of polyhedra is also reflected in (k − l− 1)-half-faces H ⊂ P of (k − l)-polyhedra P forming

a chain ∂P =
⋃

H⊂∂P H of (k − l − 1)-simplices, each with orientation, of course, matching that of P (see

Fig. 1.5).

Theorem 1.1.1. (Existence of an Opposite Half-Face) Let P be a (k − l)-polyhedron for l = 0, 1, ..., k − 2

of a k-manifold meshM with (without loss of generality positive) orientation. If H is a (k− l− 1)-half-face

of oriented (k − l)-polyhedron P and P is sharing a (k − l − 1)-face (edge) E with another (k − l)-face P ′

with the same orientation as P , then there exists exactly one (k− l− 1)-half-face H ′ such that H = H ′ = E

but with opposite orientation.

Proof. Let K ⊆ P be a (k− l)-simplex contained in a (k− l)-polyhedron P . SinceM is a k-manifold, there

is exactly one polyhedron P ′ and one simplex K ′ ⊆ P ′, so we have two neighboring simplices K and K ′
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sharing a (k − l − 1)-face E. From the definition of orientation in Def. 1.1.14, we choose a (k − l)-volume

form dω ∈ [ϖ] defined on both K and K ′. Since dω is nowhere-vanishing, orientations ω
∣∣
H

and ω
∣∣
H′ on

H = H ′ = E induced by dω are well defined with opposite signs4, and thus cancel out (see Fig. 1.7).

Therefore, by coupling (H,ω
∣∣
H
) and (H ′, ω

∣∣
H′) we construct a unique pair of opposite (k − l − 1)-half-

faces.

Definition 1.1.15. (Adjacency Maps) LetM be a 2-manifold mesh (possibly with boundary). Let h be a

1-half-face, that is: a half-edge of 2-face P ∈M then

(1) Opp : h 7→ h′ maps h to its opposite half-edge in the sense of Theorem 1.1.1.

(2) Vert : h 7→ v where v is a unique tail vertex of h, and Vert−1 = He : v 7→ h its outgoing half-edge.

(3) Next : h 7→ hn and Prev : h 7→ hp where hn, hp are next and previous half-edges of h ⊂ P in

P sharing vertices with h so that Next(Prev(h)) = Prev(Next(h)) = h. Furthermore, we define

Next(v) = Vert(Next(He(v))) and similarly Prev(v) = Vert(Prev(He(v))) to obtain the next and

previous vertices in a polygon respectively.

(4) Face : h 7→ P .

Clearly, map Vert is a bijection between the set VP = {vP1 , ...,vPm} of vertices of polygon P and its

half-edges HP = {hP1 , ..., hPm}. Hence, we can circulate over vertices vP1 , ...,vPm without half-edges, using

just ordered m-tuples of vertices representing a combinatorial polygon P . If we choose a single starting

half-edge h0 ⊂ P (and likewise a starting vertex v0) we can also define Vert : P 7→ h0.

The preference for tail vertex is merely a convention which can be inverted to a head vertex of each

half-edge. For example, the PMP Library [69] stores head vertex of each half-edge in the implementation of

SurfaceMesh [68]. Tail vertex can then be accessed by map Verthead◦Opp where Verthead maps a half-edge h

to its head vertex. PMP also reduces the total number of references by making sure every half-edge is stored

right before or after its opposite. The Geometry Central library [65], on the other hand, stores references to

tail vertices.

Half-edges with tail and head vertices form a complete loop. Because of that there exists m ≥ 3 such that

Prevm(h) = h and Nextm(h) = h. This value is sometimes referred to as the valence of face P , analogous

to the valence of a vertex counting the number of adjacent edges [69]. The existence of previous and next

half-edges, hp and hn, for each half-edge h is implied by the boundary orientation ω
∣∣
∂P

induced from volume

form dω on P via an outward-pointing normal vector field to P . Since half-edges form a chain of oriented

1-faces of a polygon, such members can be found even for degenerate (non-manifold) loops with valence 1 (a

single self-referencing half-edge) or 2 (a polygon with 2 vertices). Besides conflicting with manifoldness (see

Definition 1.1.11), these configurations are usually also discarded because they contain no useful geometric

information and prevent the viability of further computations which assume non-degeneracy.

1.1.4 Data Structures for Representing Meshes

Clearly, the definitions formulated in Section 1.1.1 need to be applied in a fully discrete computational

setting, which naturally gives rise to the preference for combinatorial definition equipped with vertex coor-

dinates representing the size and shape of the geometric structure. However, simplicial complexes K and

polyhedral meshesM contain, by definition, all connectivity information between any pair of (k− l)-faces for
l = 0, 1, ..., k. This is clearly too complex for any data structure or a file with reasonable size, thus alternative

approaches to store connectivity information are used. Since we focus on 2-dimensional surface meshes, we

4More specifically: (k− l− 1)-forms with opposite sign are induced by applying dω to outward-pointing normal vector fields
to simplices K and K′.
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only need to store primary information about polygons and vertices with some additional properties such as

surface normals and texture coordinates. The inter-polygonal connectivity information is optional, but not

used, for example, in standard file formats.

Polygon Soup

The polygon soup approach completely omits connectivity information (see Fig.1.8 (a)), and stores additional

properties attached to a polygon such as face normal. Although in the mathematical setting the 2-simplices

(triangles) might intersect with other faces at edges, they are stored independently from one another with

each facet containing the coordinates of its vertices. This is the case for the STL file format [1, 71] which

also allows binary encoding to save storage space because of the large memory requirements for meshes with

many triangles. Polygon soup data can then be converted to a representation that actually shares polygon

boundary points by removing duplicates5 as in the VCG Library6 [38] used by MeshLab�.

Buffer Mesh

Buffer-based mesh data requires, on the contrary, much less memory since it contains a vertex table containing

the coordinates of presumably unique points and a face vertex index table which only references the boundary

points in the vertex table via indices (see Fig.1.8 (b)). This approach is actually the closest to the one using

data (M, V ) of abstract connectivity information M (indices) and geometric realization as a list of points

V . Normal and texture coordinates can also be stored in a table and then referenced by indices in the vertex

index table. A notable example of such approach is the commonly used Wavefront OBJ file format [72] with

indices starting from 1.

Half-Edge Mesh

Although the above techniques contain connectivity within individual polygons, adjacency between faces

and vertices outside the face loop needs to be computed when necessary. A half-edge representation of mesh

M, described by Campagna et al. [16] at the time as a directed edge representation for surface meshes,

contains all necessary information for direct access to mesh primitives adjacent to a reference primitive, that

is: vertex, edge, or a face. Because it requires more than a minimal amount of information to be stored,

unlike the previously mentioned polygon soup and buffer representations, the half-edge representation exists

only within an application without a standardized file format. As evident from the name, the fundamental

5Also referred to as welding close-enough vertices
6In function RemoveDuplicateVertex implemented in file vcg/complex/algorithms/clean.h in the library repository.

Figure 1.8: Representations of mesh data of an icosahedron: polygon soup (a), buffer-based (b), and half-edge (c).
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Figure 1.9: A visualization of circulating from vertex vip to the next vertex vip+1 in the neighborhood N (vi) of a

central vertex vi.

building block of this data structure is a half-edge. In the last few paragraphs of Section 1.1.3, we remark

that its implementations might vary between one storing tail or head vertex reference.

Besides vertices and half-edges, polygons can also be stored in contiguous arrays (see Fig.1.8 (c)) each

with only a reference to a single (base) half-edge. Libraries such as Geometry Central [65] also store boundary

loops with the same implementation as polygon faces, but marked as a representation referring to a chain

of exterior half-edges encircling a single boundary ∂Mi, i ∈ N out of possibly many. On the contrary,

the PMP Library [69] only marks exterior half-edges with a boundary property. In fact, all data referred

to as properties is stored in a property template described, for example, by Botsch et al. [12] to improve

performance. A similar template-based approach is used in CGAL [74].

Most libraries with a half-edge mesh implementation provide the use of circulators - special iterators

across the contiguous arrays of half-edges, vertices, faces etc. for iterating along elements adjacent to a

particular primitive [69, 74]. A notable example is a vertex-vertex circulator, iterating along all vertices

connected to a single central vertex with edges. Half-edges and their adjacency information (see Definition

1.1.15) are, of course, the essential building block for such operation. If vi, 1 ≤ i ≤ NV is a central

vertex and vip ∈ N (vi), 1 ≤ p ≤ m = |N (vi)| is a vertex in its neighborhood N (vi), then we can

switch from vip to the next vertex vip+1 ∈ N (vi) in the counter-clockwise direction by taking vip+1 =

Verthead(Opp(Prev(Hehead(vj)))) where Hehead maps vj to a half-edge pointing towards it, and Verthead
maps a half-edge to its head vertex (see Fig. 1.9). Similarly to regular iterators, circulators require references

to a begin and an end item. For a full cycle, we simply set both references to a single vertex vi1 . Circulation

stops at an element before the end vertex reference regardless of whether central vertex vi is at a boundary

loop or not.

1.1.5 Operations Changing Mesh Tessellation

For reasons, not limited just to decimation or the improvement of polygon quality (for example, see [64]),

changes to mesh connectivity and also the overall tessellation of the mesh surface are of substantial im-

portance in many applications. In this section, we formalize the most common operations such as split,

subdivision, flip, collapse, etc. for general k-meshes. While considering such operations we investigate

meshes and their connectivity, making topological changes to the combinatorial structure itself.

In practice, the topological changes of M are usually interpreted in the combinatorial sense (for graph

vertex tuples) rather than changes in the topology of set M. From the continuous point of view, we can

choose between uncountably many families τM of subsets ofM satifsfying the conditions of a topology.

A straight-forward example is a Euclidean topology inherited from the ambient space. We can easily

concieve of a subdivision operation on a flat polyhedron which covers the same set of points in space even

though the connectivity changes. This means we can have changes to mesh structure which might not affect

the point-set topology at all. Moreover,M might contain naked vertices or edges which renders the purely

topological definition invalid (a simplicial k-mesh might not have a topology). For this reason we refer to

the notion of tessellation from Definition 1.1.8.
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Figure 1.10: One iteration consisting of four steps of uniform remeshing [10, 69] applied to input triangle mesh

M(orig) with starting mean edge length l = 14.9 to target edge length l = 8.5: split long edges M(I), collapse

short edges M(II), flip edges to equalize valence M(III), and finally we have the post-processed Mp after 5 steps of

tangential relaxation (tangential movement of vertices without combinatorial changes).

Figure 1.11: (a): Edge e′ diagonal in P and non-

diagonal in P . (b): Projection of polygon P into

plane ρ. (c): Flip of edge e to e′ which is ρ-diagonal

in its ambient polygon.

LetM,M′ be polyhedral k-meshes. A mapM 7→M′

whereM′ may contain simplicial and connectivity infor-

mation different fromM is called a tessellation-changing

operation on meshM. Note that such definition is broad-

enough to include maps between very different meshes.

Even a map which maps a mesh to an empty mesh or a

mesh without triangulation is contained in the set of all

tessellation-changing operations. In practice, we need to

restrict ourselves to a subset of minimal operations af-

fecting only a small-enough subset of polyhedra. More

complex operations will be a result of repeated applica-

tion of minimal operations.

Flip

Edge flips have been a standard procedure for transform-

ing planar triangulations. As the matter of fact, Law-

son [46] shows that any planar triangulation can be trans-

formed to another using a finite sequence of flips, in 1972.

However, for planar tessellations composed of k triangulated polygons each with n vertices, flipping leads to

general complexity of O(kn) of such transformation [35]. Cheng and Jin [18] show that for a class deemed

most representative of meshes encountered in practice, the complexity reduces to O(NV ) where NV is the

number of vertices. The latest novel use of edge flips can be seen, for example, with Sharp and Crane [64]

who develop a framework for finding intrinsic geodesic paths with the help of edge flipping.

Definition 1.1.16. (Diagonal) Let P be a planar polygon. Edge e connecting two of its boundary vertices

v1, ...,vm is said to be diagonal in P if Int(e) ⊂ Int(P ).

For illustration, see Fig. 1.11 (a).

Definition 1.1.17. (Edge Flip Between Triangles) LetM be a triangle 2-mesh, and let T, T ′ be triangles

sharing an edge e. A tessellation-changing operation Φ :M 7→M′ is called a flip of edge e if T and T ′ are

replaced with T ′′ and T ′′′ and edge e by e′ connecting vertices from T and T ′ from outside of e.

If triangles T and T ′ lie in the same plane we have T ∪T ′ = T ′′∪T ′′′. In particular, for co-planar pairs of

adjacent triangles T and T ′, edge e flipped to e′ is a diagonal in T∪T ′ = T ′′∪T ′′′, that is: Int(e) ⊂ Int(T∪T ′)
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and analogously Int(e′) ⊂ Int(T ′′ ∪ T ′′′). Without co-planarity of all points in all convex sets T and T ′, the

notion of a diagonal needs to be extended with the help of projections:

Definition 1.1.18. An edge e is said to be ρ-diagonal in polygon P if there exists a plane ρ ⊂ E3 and a

projection projρ : E3 → ρ such that Int(projρ(e)) ⊂ Int(projρ(P ∪ P ′)) and projρ(P ∪ P ′) is a polygon in ρ.

Figure 1.12: Flip ΦT flips edge e be-

tween two adjacent triangles T and T ′,

and ΦP flips an edge between two ad-

jacent general polygons P and P ′.

In other words: the image projρ(P ∪ P ′) is homeomorphic to a

closed disk D2
and from the definition of a projection: so are its con-

stituent triangles projρ(Ti), i = 1, ..., r. In some exotic cases, project-

ing onto a plane (see Fig. 1.11 (b)) is insufficient, and we require,

for example, more general projections (e.g: stereographic etc.). Rest

assured, we shall work with well-behaved polygons which can be pla-

narized by projecting onto planes ρ ⊂ E3 (see Fig. 1.11 (c)). Fur-

thermore, we can extend the notion of edge flipping to higher-valence

polygons P and P ′ by considering flips between diagonals of a polygon

P ∪ P ′.

Definition 1.1.19. (Edge Flip Between Polygons) LetM be a polyg-

onal 2-mesh, and let P, P ′ ∈ M be polygons adjacent at edge e. A

tessellation-changing operation Φ : M 7→ M′ is called a flip of edge

e if P, P ′ can be replaced with a pair of polygons P ′′, P ′′′ sharing an

edge e′, ρ-diagonal in P ∪ P ′.

Boundary edges e ∈ ∂M of triangles T are, by definition, not

flippable since there is no other diagonal edge in T to which we can transform the configuration. For a

boundary polygon P a diagonal e′ can be found by shifting the pair of vertices, for example, in clockwise or

counter-clockwise direction. However, there will always be at least one vertex ve which needs to be discarded

from P (see Fig. 1.13 (a)). Furthermore, if e has a neighboring boundary edge ẽ also in P , ve can become

a naked vertex inM (see Fig. 1.13 (b)). Besides the combinatorial obstacles, flipping boundary edges fails

also on the basis of the resulting flipped polygon, not covering the same points of its constituent triangle

convex hulls.

Figure 1.13: (a): Flipping a single

boundary edge e. (b) Flipping two con-

secutive boundary edges e and ẽ.

Bern et al. [7] extend the notion of flip transformations to hexahe-

dral meshes used, for example, in finite element analysis. Although

in this work, we focus on flips on surface meshes only, for curious

readers we can extend the notion to higher dimensions:

Definition 1.1.20. (Edge Flip Between Polyhedra) Let M be a

polyhedral k-mesh, and let P, P ′ ∈ M be polyhedra adjacent to

(k − 1)-face E. A tessellation-changing operation Φ : M 7→ M′

is called a flip of (k − 1)-face E if P, P ′ can be replaced with a

pair of polyhedra P ′′, P ′′′ sharing a (k − 1)-face E′ such that there

exists a hyperplane Π ⊂ En and a projection projΠ : En → Π such

that Int(projΠ(e)) ⊂ Int(projΠ(P ∪ P ′)) and projΠ(P ∪ P ′) is a

polyhedron in Π.

Split and Subdivision

Flipping, described in previous section, does not change the total

amount of (k− l)-faces, l = 0, 1, ..., k and their connectivity informa-

tion in k-meshM. It changes valence of adjacent vertices. However,
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it is often necessary to perform operations which either reduce the amount of information inM by removing

(k− l)-faces, or to add (k− l)-faces increasing mesh complexity. This section focuses on some from the latter

class of tesselation-changing operations, taking a (k− l)-face as input and outputting multiple (k− l)-faces.

Definition 1.1.21. (Triangle Edge Split) Let M be a triangle 2-mesh, and e an edge with two adjacent

triangles K,K ′ ∈ M. A tessellation-changing operation Ξ : M 7→ M′ is called a λ-split of edge e if this

edge is replaced by edges e(0) and e(1) such that e = e(0) ∪ e(1), Int(e(0))∩ Int(e(1)) = ∅ and for λ ∈ (0, 1) we

have µ1(e
(0)) = λµ1(e) and µ1(e

(1)) = (1 − λ)µ1(e) where µ1 is the 1-dimensional Lebesgue measure (edge

length). Added vertex vΞ
e such that {vΞ

e } = e(0) ∩ e(1) is referred to as split vertex. For triangles K and K ′,

Ξ satisfies one of two alternatives:

(1) the adjacent triangles K and K ′ are replaced with quadrilateral polygons P and P ′ sharing split vertex

vΞ
e and covering the same points in E3, that is: K = P and K ′ = P ′, or

(2) K and K ′ are replaced with K(0),K(1) and K ′
(0),K

′
(1) respectively, such that K = K(0) ∪ K(1) and

K ′ = K ′
(0) ∪K

′
(1), with split edges ẽ = K(0) ∩K(1) and ẽ

′ = K ′
(0) ∩K

′
(1).

Figure 1.14: (a) Standard edge splits of e: the formation

of polygons P and P ′ from triangles (Ξ(1)), and split with

splitting faces using split edges ẽ and ẽ′ (Ξ(2)). (b) Polygon

face-splitting edge split types (I.) - (III.).

The third option without any straight-forward

practical use would be to replace K and K ′

with their union, and split edge e into e(0) and

e(1) while discarding all connectivity information.

Splitting a boundary edge e ∈ ∂M reduces the

amount of new faces in case (2) of Definition 1.1.21

to a half. Furthermore, parameter λ ∈ (0, 1) is

generally set to 1/2 in most applications, that

is: edge e is split at its midpoint. For example,

function SurfaceMesh::split from the PMP li-

brary [69] with an edge input parameter uses mid-

point split.

Definition 1.1.22. (Polygon Edge Split) LetM
be a polygonal 2-mesh, and e an edge with two

adjacent polygons P, P ′ ∈ M. A tessellation-

changing operation Ξ : M 7→ M′ is called a λ-

split of edge e if this edge is replaced by edges

e(0) and e(1) analogously to Definition 1.1.21. In

addition to alternatives (1) and (2) of Definition

1.1.21 extended to polygons, we define the follow-

ing alternatives for splitting faces P and P ′:

(1) the adjacent polygons P and P ′ are split by chosen edges ẽ and ẽ′ respectively,

(2) P and P ′ are split by edges ẽ1, ..., ẽm−l, 0 ≤ l ≤ (m + 1)(m − 2)/2 and ẽ′1, ..., ẽ
′
m′−l′ , 0 ≤ l′ ≤

(m′ + 1)(m′ − 2)/2, ρ-diagonal in P and P ′ respectively7. m and m′ are the valences of P and P ′

respectively (before adding split vertex vΞ
e to each) and l, l′ are the numbers of split edges which are

not ρ-diagonal in each polygon.

(3) Additionally, we can consider a combination between options (1) and (2) by considering only some

edges ρ-diagonal in each polygon.
7It can be shown by induction, that the number of diagonal edges in a convex planar m-gon is m(m− 2)/2. Therefore, by

adding an extra vertex, to a general polygon gives rise to an upper bound (m+ 1)(m− 2)/2 for the number of diagonals.
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Analogously to the extension of edge flip to a (k − 1)-face (Definition 1.1.20) we can extend the above

definitions to splits of (k − 1)-faces shared by polyhedra P and P ′. Edge splits of type (1) with respect

to Definition 1.1.21 lead to the notion of a face split which may follow a general pattern: given vertices

v1, ...,vm of P , if we can construct an edge e, ρ-diagonal in P connecting any pair of vertices, say vi and vj

for i ̸= j and i, j ∈ {1, ...,m}, then as long as split edges of the face do not intersect in Int(P ) we can split

polygon P into multiple sub-faces. Naturally, we are then not limited by the pre-existing polygon vertices,

if we simply add new vertices to ∂P connecting split edge endpoints. We shall first define this notion for

general polyhedral meshes:

Definition 1.1.23. (Face Subdivision) Let M be a polyhedral k-mesh and P its k-face. A tesselation-

changing operation Σ :M 7→M′ such that P is decomposed into polyhedra P1, ..., Pd ∈M′ is called a d : 1

subdivision8 of face P . Furthermore, let P1, ..., Pd ∈ M′ be polyhedra satisfying Int(Pi) ∩ Int(Pj) = ∅ for

i ̸= j, then a subdivision Σ satisfies one of three alternatives:

(1) the adjacent k-faces change their valence without adding new edges outside of Int(P ),

(2) we also subdivide each adjacent k-face using ρ-diagonal edges to account for the vertices added to ∂P ,

or

(3) we discard the connectivity of P to other faces and just subdivide P treating it as an independent

polyhedron in a polyhedron soup representation. After subdivision P is replaced by P1, ..., Pd.

If µ(Pi) = µ(Pj), i ̸= j and i, j ∈ {1, ..., d} where µ is a k-dimensional Lebesgue measure induced by scalar

and cross product in En, then subdivision Σ producing P1, ..., Pd is said to be uniform. Let P and P ′ be

adjacent polyhedra in M. Subdivision ΣP of P is compatible with ΣP ′ of P ′ if adjacent polyhedron P ′

requires no additional subdivision of type 2. A global subdivision Σ of meshM is a collection of subdivisions

ΣP1 , ...,ΣPNF
applied to each face Pi ∈M, i = 1, ..., NF . We say that Σ is globally compatible if it is global,

and compatible for each pair of connected polyhedra P and P ′.

8Read d-to-1 subdivision.

Figure 1.15: (a): A 4 : 1 subdivision of polygon P . (b): A uniform 9 : 1 subdivision of a triangle T . (c): Subdivision

Σ composed of two compatible 4 : 1 subdivisions on polygons P and Q. (d): A globally-compatible approximating

uniform 4 : 1 subdivision (Loop [50]).
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Notice that we do not require that
⋃d

i=1 Pi = P because the union of decomposed polyhedra might

occupy different points in En. The equivalence of
⋃d

i=1 Pi to P takes the form of homeomorphism in En.

This means that not only the newly added vertices inM′ may occupy positions different from the points in

original polygon, but also the positions of original vertices in ∂P can be updated. The formulas describing the

update of pre-existing and the creation of new vertices in a mesh, accompanied by an update of connectivity,

under subdivision Σ will be referred to as a subdivision scheme.

Definition 1.1.24. (Approximating and Interpolating Subdivision) Let M be a polyhedral k-mesh and

Σ :M 7→M′ a d : 1 subdivision onM. Let VP = {v1, ...,vm} ⊂ ∂P be the set of boundary vertices of the

subdivided polyhedron P ∈ M. If Σ
∣∣
VP

= id
∣∣
VP

then we refer to Σ as an interpolating subdivision. On the

other hand, if Σ changes positions of vertices in VP , we call it an approximating subdivision (see Fig. 1.16).

Figure 1.16: A 2D slice showing an interpolating subdivision

ΣI and an approximating subdivision ΣA.

A well-defined scheme of subdivision Σ al-

lows for repeated subdivision of original poly-

gons. An attentive reader might then ask:

What happens to surfaceM when repeatedly

applying a globally compatible d : 1 subdivi-

sion ad infinitum?

Definition 1.1.25. (Limit Surface) LetM be

a 2-mesh, and Σ a globally compatible d : 1

subdivision. Set (
lim
s→∞

Σs(M)
)
⊂ E3 , where Σs =

s-times︷ ︸︸ ︷
Σ ◦ ... ◦ Σ

is called the limit surface of subdivision Σ.

Figure 1.17: The Loop subdivision scheme ΣLoop and the

Catmull-Clark variant ΣCC.

Commonly used subdivision schemes are glob-

ally compatible. Even if one chooses to subdivide a

subsetMΣ ⊂M of meshM compatibility at faces

adjacent to ∂MΣ should be enforced to make sure

the result meshM′ keeps its key geometric charac-

teristics such as genus or Euler characteristic χ(M).

A notable example of a globally compatible 4:1

approximating subdivision of triangle 2-meshes by

Loop [50] which generates C2 continuous limit sur-

faces everywhere except at extraordinary vertices9

where they are C1 continuous (see Fig. 1.15 (d),

and Fig. 1.17). In particular, upon subdivision, we

distinguish between old vertices updated to:

v∗ = (1− β)v+ β

m∑
p=1

vip , (1.1)

with

β =
5

8
−
(
3

8
+

1

4
cos

(
2π

m

))2

9If M has vertex valence m for almost all pairwise neighboring vertices, an extraordinary vertex is one with valence m′ ̸= m.
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Figure 1.18: A globally-compatible interpolating 4:1 subdivision scheme constructing icosahedral tessellations of a

sphere.

where vip ∈ N (v), p ∈ {1, ...,m = |N (v)|}, and for each edge e new vertices are computed by:

v∗
e =

1

4

(
3(v+ vip) + vip+1 + vip−1

)
, where v,vip ∈ e (1.2)

and conv({v,vip−1
,vip}) and conv({v,vip ,vip+1

}) are two triangles from vertex v and its neighbors N (v)

sharing edge e. Boundary edge vertices are simply computed as average of their endpoints: v∗
e = (v+vip)/2,

whereas boundary old vertices are updated using:

v∗ =
1

4

(
6v+ vip + vip+1

)
.

An interpolating10 analogue which holds old vertices constant, and inserts midpoints v∗
e = (v +

vip)/2, v,vip ∈ S2, p ∈ {1, ..., 5} to each edge e can be used to construct an icosahedral tessellation of

a sphere. We start with an icosahedron, and insert vertices v∗
e for each edge e which we then project onto

S2 by normalizing:

projS2(v
∗
e) = v∗

e/∥v∗
e∥.

We can then scale and translate the resulting mesh to match an approximation of an arbitrary sphere

S2c,r ⊂ E3 with center c ∈ E3 and radius r > 0 (see Fig. 1.18). We will refer to both Loop subdivision and

the construction of an icosahedral sphere from the combinatorial point of view in Section 1.1.7.

Another example of an approximating scheme is the Catmull-Clark globally compatible subdivision [17]

sampling new vertices at face centroids applicable to arbitrary polygons. The Catmull-Clark approach does

not subdivide all polygons into the same number of faces, instead the amount of subdivision faces depends

on valence mP of an individual face P ∈ M (see Fig. 1.17). We can therefore refer to it as a mP : 1

subdivision.

Although there are modern attempts to extend the known subdivision schemes to non-manifold meshes

(see Moulaeifard et al. [55]), clearly not all meshes M contain only (d : 1)-subdivisible faces. Naked edges

and vertices need to be cleared before we can apply a practical globally compatible subdivision scheme.

Subdivision surfaces - a class of 2-meshes generated via a subdivision scheme (according to Definitions

1.1.23 and 1.1.24) from simple input meshes - is widely used to generate finer approximations of smooth

surfaces. Such meshes are then used, for example, in the final high level of detail (LOD) renderings of

character shapes in animation [22]. Due to high demands on performance, however, animated characters in

interactive real-time applications usually use meshes with fixed polygon tessellation.

Edge Collapse and Vertex Split

In this section, we focus on two mutually inverse tessellation changing operations on 2-meshes. They represent

an atomic approach to add or remove a vertex with a chosen edge as a basis.

10Under spherical interpolation.
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Figure 1.19: (a): Collapse Θλ of edge e and its inverse operation Θ−1
λ , the vertex split, parametrized by λ ∈ [0, 1].

(b.1), (b.2): Cases when shared valence does not hold the values in (1.3) producing a non-manifold vertex (b.1), and

a non-manifold edge to a triangle with flipped orientation (b.2).

Definition 1.1.26. (A Collapsible Edge) LetM be an oriented 2-manifold polygonal mesh, possibly with

a boundary ∂M. An edge e ∈M with endpoints v
(0)
e and v

(1)
e is collapsible if:

|N (v(0)
e ) ∩N (v(1)

e )| =
{

1 , for e ⊂ ∂M
2 , otherwise

(1.3)

and for a polygon P adjacent to e only one of vertices Prev(v
(0)
e ),Next(v

(1)
e ) /∈ e in P can be a boundary

vertex.

Value in formula (1.3) will be referred to as shared valence of edge endpoints v
(0)
e and v

(1)
e .

Definition 1.1.27. (Edge Collapse) Let M be an oriented 2-manifold polygonal mesh, possibly with a

boundary ∂M. A tessellation-changing operation Θ : M 7→ M′ is referred to as collapse of edge e ∈ M
if edge e, collapsible with respect to Definition 1.1.26, is removed fromM with its endpoints v

(0)
e and v

(1)
e

identified with a single vertex v∗
e ∈ e. Adjacent polygons P (0) and P (1) are updated correspondingly.

To ensure compatibility with polygons P (0) and P (1) adjacent to e half-edges h0 and h1 are removed

from their corresponding half-edge loops. If the size of the resulting half-edge loop for any of the neighboring

polygons P (0) and P (1) drops below 2, the corresponding face is removed. If e ∈ ∂M then only one adjacent

polygon P is affected.

Without restrictions formulated in Definition 1.1.26, changes induced by edge collapse Θ might lead to

the construction of non-manifold vertices or edges (see Fig. 1.19 (b.1) and (b.2) respectively). In particular,

the shared valence restriction prevents the formation of a non-manifold edge connecting the resulting vertex

v∗
e with an extra shared neighborhood vertex ṽ ∈ N (v

(0)
e ) ∩ N (v

(1)
e ). The latter restriction on vertices

Prev(v
(0)
e ),Next(v

(1)
e ) ̸⊂ e, on the other hand, prevents the formation of non-manifold vertices formed upon

removal of edge e.

As in Definition 1.1.21, the position of vertex v∗
e can be parametrized by a linear interpolation parameter

λ ∈ [1, 0]. In general, collapse Θ of edge e is the midpoint collapse for λ = 1/2. According to [69], for λ = 0,

we refer to Θ as a collapse of half-edge h(0) = Hehead(v
(0)
e ), and analogously for λ = 1, Θ collapses half-edge

h(1) = Hehead(v
(1)
e ).

Definition 1.1.28. (Vertex Split) LetM be an oriented 2-manifold polygonal mesh possibly with a bound-

ary ∂M. A vertex v ∈ M is said to be splittable if there exists an edge collapse Θ : M′ 7→ M such

that edge e ∈ M′ with endpoints v
(0)
e and v

(1)
e is collapsed to vertex v. A tesselation-changing operation

Θ−1 :M 7→M′ is then referred to as vertex split.
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One can also consider cases when vertex split Θ−1 is combinatorially equivalent to the split Ξ of edge

e ∈ M. The equivalence holds only when the newly added vertex v∗ ∈ e for Ξ ends up with valence

corresponding to the valence of an endpoint v
(j)
ẽ , j ∈ {0, 1} of edge ẽ collapsed by Θ.

Among the more ”direct” operations which add or remove mesh vertices is, for example, vertex removal,

that is: remove a vertex v fromM and all simplices and polyhedra in its star St({v}). An inverse operation

inserting a vertex would need a well-defined desired neighborhood N (v∗) ⊂M of the newly inserted vertex

while also discarding faces in Int(Lk({v∗})) to avoid creating non-manifold edges (where Lk is the link

according to Definition 1.1.1).

Since operations Θ (from Definition 1.1.27) and its inverse (Definition 1.1.28) can be considered atomic

(simple enough), they are generally favored over the above-mentioned direct deletion and insertion in various

decimation algorithms. Moreover, the deletion of vertex v fromM creates a hole from the missing faces in

its star St({v}) which then needs to be properly filled to maintain the topological properties ofM.

1.1.6 Boundary Loops and Binary Partitioning of the Ambient Space

The missing patches of a surface present problems when the union of meshM is treated as a solid object

in which we require that there is a clear distinction between its interior Int(M) and exterior Ext(M). This

is particularly important in the process of voxelization - conversion from mesh representationM to values

in a voxel grid G ⊂ E3 (for more details see Section 1.2.2). Even with an oriented manifold mesh M, the

distinction between the aforementioned subsets of E3 might be difficult to approximate for large-enough

holes.

Definition 1.1.29. (Boundary Edge) Let M be a manifold 2-mesh with a boundary ∂M. Edge e ⊂ ∂M
is referred to as a boundary (or naked) edge if it has only one adjacent face P ∈ M. A chain e1, ..., em of

boundary edges such that ei ∩ ei+1 = {vi}, i = 1, ...,m are boundary vertices, is referred to as a hole. A

meshM without holes is said to be watertight.

For dimensionality reasons, the holes ofM (according to Definition 1.1.29) should not be confused with

the holes of the solid object Int(M) whose number projects to the genus g of M. In particular, for Euler

characteristic χ(M) = NV −NE +NF where NV is the number of mesh vertices, NE is the number of edges,

and NF the number of faces inM, we have

χ(M) =

{
2− 2g , ifM is watertight,

2− 2g −Nb , otherwise,
(1.4)

where Nb is the number of boundary loops.

Recall, that in the context of half-edges (see Section 1.1.3) a hole can be represented as a boundary

loop of chained exterior half edges h1, ..., hm, treating a hole as a special type of face. True faces adjacent

to boundary edges are often referred to as boundary faces, and, as we observed in Section 1.1.5, assume

fundamentally different behavior for tessellation-changing operations.

Most voxelization techniques require watertight meshes as input. The approach using angle-weighted

pseudonormals [14] only limits the input to 2-manifold meshesM for which angle-weighted vertex (pseudo)

normals n̂i to the mesh surfaceM can be correctly evaluated at each mesh vertex vi. Using the closest point

query for triangles11 we then interpolate normal vector n̂ at the closest point v inside the closest triangle

using barycentric coordinates. The ambient space can then be partitioned using the sign of the dot product

n̂ · (x− v) where x ∈ E3 is the sampled point (see Fig. 1.20 (b.1), (b.2), and (b.3)).

11For example, using pmp::TriangleKdTree::nearest from the PMP Library [69].
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Figure 1.20: (a): Triangle mesh M with a single boundary loop ∂M. (b.1): A 2D slice of a watertight mesh M
with the sign of dot product n̂ · (x−v) for any x ∈ E3 partitions the ambient space into interior Int(M), and exterior

Ext(M). Normal vector n̂ is interpolated from closest face vertex normals n̂i and n̂j . (b.2), (b.3): Introducing a

small-enough hole in the mesh does not necessarily undermine the partitioning using the dot product sign. Instead,

a cone-like protrusion of negative sign values extends into space (white dotted line). The oblique (c.1) and the side

view (c.2) of the sign field for the triangulation of the Möbius strip MMöb with three slices along the x-axis showing

severe discontinuities produced from the incoherent normal vectors to the non-orientable surface.

The partitioning holds even for boundary vertices vi ∈ ∂M, the accuracy of the spatial partitioning is,

however, limited by the size and shape of the hole. Large boundary loops with highly divergent pseudonor-

mals at their vertices create a cone-like protrusion which extends beyond the non-watertight surface’s shape

(see Fig. 1.20 (b.2) and (b.3)). The situation reaches extremity for non-orientable surface meshes such as

the Möbius strip where the shape resulting from binary partitioning of E3 becomes highly distorted since it

only depends on the closest point query and the relative orientation of the surface pseudonormal (see Fig.

1.20 (c.1) and (c.2)). A solid object representing Int(M) generated from such partitioning could then easily

be non-compact.

It is often desired to work with solid objects which represent bulks of material in the real world. For this

matter, the methods of constructive solid geometry (CSG) require some preprocessing steps to make sure

one works with well-defined solids. Whether it is by actually filling the holes of 2-manifold meshes [48], or

by introducing variable winding numbers [79], the requirements for the preprocessing technique depend, as

always, on the type of input.

1.1.7 The Amount of Triangle Mesh Primitives After s ≥ 0 Subdivision Steps

Knowing how many vertices, edges or faces a mesh will have after s ∈ N successive steps of globally-

compatible subdivision (see Definition 1.1.23) becomes crucial, primarily for reasons related to numerical

stability of semi-implicit fairing schemes for surface meshes (see Section 2.3), and secondarily to alleviate

computational demands for repeated memory allocation. The former rationale, in particular, stems from

the fact that under uniform sampling of subdivided surface, one can predict the size of a neighborhood

V ⊂M containing a single a mesh vertex v. Furthermore, given a family of meshes {Ms}s∈N+
0
with level of

detail (LOD) parametrized by s, one can have, for instance, a more direct access while transitioning between

different LODs of a mesh.
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Theorem 1.1.2. LetMs, s ∈ N+
0 be a watertight 2-manifold triangle mesh, and let Σ :Ms−1 7→ Ms, s > 0

be a globally-compatible 4 : 1 subdivision inserting a single vertex for each edge e ∈ Ms. Let Ns
V , N

s
E, and

Ns
F denote the number of vertices, edges, and faces ofMs respectively. Then given starting counts N0

V , N
0
E,

and N0
F we have:

Ns
E = 4sN0

E , N
s
F = 4sN0

F , (1.5)

Ns
V =

1

3

(
N0

E(4
s − 1) + 3N0

V

)
. (1.6)

Figure 1.21: Tiling a wa-

tertight triangle mesh during

4:1 subdivision.

Proof. First, we consider that Σ subdivides each face into 4 faces, that is

Ns
F = 4Ns−1

F which yields Ns
F = 4sN0

F for any s ∈ N. However, since we insert

a new vertex for each existing edge, the number of added vertices in step s

will be equal to edge count Ns−1
E . This gives rise to a system of recurrence

equations:
Ns

V = Ns−1
V +Ns−1

E ,

Ns
E = 4Ns−1

E .
(1.7)

Before solving this system, we show why the second equation for NE holds. We

need to verify that under Σ the number of edges inMs−1 increases to 4 times

the count in previous step.

Since there are no boundary edges inMs−1, s ∈ N, each triangle is guaran-

teed to have 3 edge-adjacent neighbors T0, T1, and T2. Define S1 as a quadru-

ple of edges after subdivision stemming from an inserted vertex, and S2 also a

quadruple of created edges distinct by branching from an inserted vertex into a

neighboring triangle as well (see Fig. 1.21). We observe, that as long as there is

no boundary edge, any triangle can be covered with configurations S1 and S2. This pattern can be extended

acrossMs without conflicts because the valence of any vertex vj , j = 0, 1, 2 is at least 3.

After solving (1.7) using the s-th power of the matrix of the system, we get Ns
E = 4sN0

E and (1.6).

Introducing N b
E > 0 boundary edges implies that the same number of S2-units needs to be changed to

3-edge configurations S̃2 (see Fig. 1.21) reaching only into the interior of one triangle from the previous step

Ms−1. Due to its inherent dependence on boundary edge count N b
E , the general recurrence (1.7) is violated.

Similar results were evaluated by Alarcao et al. [3] and Osthoff et al. [56] in preparation of mesh domains

in the form of an icosahedral tessellation of a sphere (see Fig. 1.18). The latter approach, however, only

holds for the next step of a globally-compatible uniform N2 : 1 subdivision of an icosahedron mesh. The

PMP implementation [69] of Loop subdivision12 pre-allocates mesh memory using recurrence expressed as

system:
Ns

V = Ns−1
V +Ns−1

E ,

Ns
E = 2Ns−1

E + 3Ns−1
F ,

Ns
F = 4Ns−1

F ,

with a slightly more complicated solution:

Ns
V =

N0
F

2

(
2− 3× 2s + 4s

)
+N0

E(2
s − 1) +N0

V ,

Ns
E = 2s−1

(
3N0

F (2
s − 1) + 2N0

E

)
,

Ns
F = 4sN0

F .

12See function Subdivision::loop implemented in file src/pmp/algorithms/Subdivision.h|.cpp in the library repository.
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We can then derive, for example, (1.6) from the first equation using substitution N0
F = 2

3N
0
E which holds

for all watertight manifold triangle meshes. More specifically, every face has 3 half-edges and, by Theorem

1.1.1, there are always two half-edges for each edge, that is: NH = 2NE = 3NF . Note that the statement

of Theorem 1.1.2 holds for any genus g ≥ 0, since the introduction of handles in a closed manifold surface

M ⊂ E3 violates neither the tessellation using units S1 and S2 from Fig. 1.21, nor the substitution Ns
F =

2
3N

s
E , s ∈ N+

0 .

Figure 1.22: Shrink-wrapped (see Chapter 2)

Stanford Bunny mesh with metrics from Table

1.1 evaluated per triangle and averaged over

vertex face stars13.

Figure 1.23: Jacobians J and J∆ from unit

triangle (left), and the unit equilateral trian-

gle (right) to the planar representation of T =

Conv({v0,v1,v2}) in triangle plane: PT .

1.1.8 Quality Metrics

Since meshes might be further used for additional computa-

tion and subsequent efficient storage, it is important to measure

the quality of individual triangles or polygons. The general rule

of thumb is that triangle quality is a measure of closeness to

the equilateral shape, and analogously the quadrilateral faces

should approach flat square shapes.

Faces with large discrepancies in internal angles might pro-

duce numerical instability in finite element or finite volume

solvers. Yet only a small minority of shapes can be tessel-

lated by regular polygons, that is: we almost always introduce

slightly skewed faces. For this reason, we need to evaluate the

faces with at least some global metric, and notify the user in

case of large deviations from some norm.

An example of a deep investigation for what quality met-

rics to use can be found in J. Schewchuk’s preprint [66]. In

this thesis, we will use a small number of quality merics from

Knupp [43] which are preferred for example by Sandia National

Laboratories in the Cubit Project [62].

The first two metrics in Table 1.1 are self-evident, stemming

from the shape of each triangle. The last metric does so as well,

with equilateral triangles having κ(J∆) = 1 and upon skewing

of the triangle shape κ(J∆) increases to arbitrarily high values.

Since we are working with 2-meshes, the triangles T =

Conv({v0,v1,v2}) embedded in E3 must be projected into a

plane PT . Define vj = projPT
vj , j ∈ {0, 1, 2}. In general, we

define a Jacobian by Knupp [43]:

J =
(
v1 − v0 , v2 − v0

)
(1.8)

and evaluate its condition number as:

κ(J ) = ∥J ∥∥J−1∥, (1.9)

where ∥ · ∥ is the 1-norm. The Jacobian J corresponds to a

transformation from a unit triangle Conv({(0, 0)⊤, (1, 0)⊤, (0, 1)⊤}) to TPT
= Conv({v0,v1,v2}) (see Fig.

13The VTK Polydata format we used supports only values per mesh vertex. Therefore we need to average face values for
each vertex to show color plots as in Fig. 1.22.
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1.23). We can obtain (1.8) directly from vertices vj ∈ E3, j ∈ {0, 1, 2} using edge basis vectors

e0 = v1 − v0 , e1 = v2 − v0 , e2 = e0 × e1.

to evaluate J using orthonormal basis vectors x̂, ŷ, and ẑ, computed as follows: Firstly, x̂ = e0/∥e0∥, and
given ẑ = e2/∥e2∥ we get the remaining basis vector by rotating x̂ counter-clockwise about ẑ-axis: ŷ = x̂⊥

ẑ .

This yields:

J =

(
e0 · x̂ e1 · x̂
e0 · ŷ e1 · ŷ

)
=

(
∥e0∥ e1 · x̂
0 e1 · ŷ

)
. (1.10)

Table 1.1: Triangle quality metrics used by [62] with

κ(J∆) modified for equilateral triangles.

Metric Full Name Full

Range

Acceptable

Range

θmin Min. internal

angle

(0, π3 ) (π6 ,
π
3 )

θmax Max. internal

angle

(π3 , π) (π3 ,
π
2 )

κ(J∆) Condition num-

ber of triangle

Jacobian

[1,∞) [1, 1.3)

Base triangle of J , however, does not corre-

spond to triangles produced by uniform or adaptive

remeshing schemes [10, 23].

To obtain the triangle Jacobian J∆ modified for

equilateral triangles (see Fig. 1.23) we need to trans-

form the corner Jacobian (1.10) to a new basis by

scaling it:

J∆ = J

(
2 0

0 1

)
=

(
2∥e0∥ e1 · x̂
0 e1 · ŷ

)
,

since the basis of an equilateral triangle is scaled by

half in the x̂ direction. Condition number κ(J∆) is

then evaluated using 1-norms analogously to (1.9).

We notice, that although they are scale-invariant, the values of κ(J∆) are sensitive to even slight deviations

from equilateral shape. Triangles closer to the corner shape are evaluated with κ(J∆) ≈ 2. The upper

bound for acceptable values in the Cubit project [62] seems therefore way too strict for example in finite

volume schemes of non-linear parabolic models used in Section 2.2.

The notion of extremal angles θmin and θmax can then be extended to quadrilateral faces with corre-

sponding acceptable ranges. We can then use the corner Jacobian J to evaluate skewness of quads, since

we require quad faces to be close to square shape.

1.2 Scalar and Vector Fields

Extending our scope to the volumetric subsets of Euclidean space G ⊆ En as domains for geometric

data is our next step. In order to avoid the utilization of meshes and boundary representations (BReps),

it is necessary to represent the essence of a solid object as values associated with data points in space or

alternatively, in a completely implicit form. This can take the form of a function f : G → R, a vector

v : G → Rn, or a tensor field. It is important to note that set G is typically a compact simply-connected

domain where, for instance, a contour plot of an implicit scalar field can be visualized or where values of a

discrete field can be stored.

1.2.1 Functional Representation

Functional representations are a powerful technique for representing shapes in Constructive Solid Geom-

etry (CSG). When representing relatively simple (non-fractal) shapes, they can easily be regarded as the

least memory-demanding representation. Unlike traditional boundary representations that store explicit ge-

ometry, functional representations describe shapes as the composition of a set of functions. These functions
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Figure 1.24: Basic boolean operations (1.12) on functions of type (1.11): g1 = g(∥x − c1∥/R1) and g2 = g(∥x −
c2∥/R2) with R1 = 1.5, R2 = 1, c1 = (1, 1)⊤, and c2 = (1.5, 1)⊤.

f : G → R define the properties of the shape, such as its (iso-) surface {x ∈ E3 : f(x) = 0}, exterior
{x ∈ E3 : f(x) > 0} and interior {x ∈ E3 : f(x) < 0}. The signature of the functional representation can,

of course, be opposite. Multiple functions f can be combined using Boolean operations to create complex

shapes.

The concept of functional representations was first introduced by Bloomenthal [9], presenting a technique

for approximating implicit surfaces using polygonal meshes, which could be efficiently rendered on a com-

puter. The technique relied on a functional representation of the implicit surface, which was defined as the

zero set of a set of functions.

A simple functional example representing a primitive shape is the square d2 of the Euclidean distance

function from point (px, py, pz)
⊤ = p ∈ E3:

d2p : x 7→ ∥x− p∥2 = (x− px)2 + (y − py)2 + (z − pz)2 , (x, y, z)⊤ = x ∈ G.

Considering only the distance dp, we obtain a simple radially symmetric linear function with a C1 discontinu-

ity at p. A set with non-zero 2-dimensional Lebesgue measure can then be produced by using
√
d2p(x)−R2

with radius R > 0 of the resulting spherical surface. Besides spheres, one can generate distances to various

other geometric primitives whose exact and approximate evaluations can be found, for example, on the

website of Inigo Quilez [58].

Figure 1.25: A plot of g(r).

Furthermore, Pasko et al. [57] describe the basic set of boolean opera-

tions in terms of increasing functions in Section 2.2.1. They even include

a variety of smoothing operations as well as blending for the functional

values. For our basic example, we take inspiration from Section III. of

Ryan Geiss’ web article [25] which focuses on the implementation of a

feature commonly known as metaballs integrated into a variety of graph-

ics engines, that is: for r > 0

g(r) =

{
r4 − r2 + 0.25 , if r < 0.7,

0 , otherwise.
(1.11)

A metaball with radius R > 0 and center c ∈ E2 is represented by function g(∥x−c∥/R). The basic boolean
operations in this case are:

Union: g1 ∨ g2 = max (g1, g2),

Intersection: g1 ∧ g2 = min (g1, g2),

Difference: g1 \ g2 = max (g1 − g2, 0).
(1.12)

The signature of such functions is, of course, such that points x ∈ En where f(x) > 0 are in the object’s

interior. An example of possible results of operations (1.12) between two functions of type (1.11) can be

seen in Fig. 1.24.
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Figure 1.26: Ray marching towards an isosurface

Sf from point p1, iterating towards the final point

p∗.

The advantage of expressing solid objects as isosur-

faces of an implicit scalar field is exploited by the class

of rendering algorithms referred to as ray marching (or

sphere tracing) [26]. Instead of computing surface prop-

erties from approximating linear elements (triangles), the

implicit surface Sf = {x ∈ G : f(x) = 0} is rendered as is

from an intersection S2
∗∩Sf with the final iteration S2

∗ of

a series of spheres S2
pi,Ri

∩Sf ̸= ∅, i = 1, ..., Niter along a

ray
−−−→
p1p

∗. Each iteration of a sphere centered at a point pi

is computed from the intersection between it an the iso-

surface Sf . The next point {pi+1} = S2
pi,Ri

∩
−−−→
p1p

∗ then

becomes the centre of the next sphere, until an approxi-

mate final intersection point p∗ is reached. The surface

properties (normal, colors etc.) are then computed from the intersection with the last sphere S2∗ with radius

below some tolerance limit (see Fig. 1.26).

Functional representations (FReps) are an area of active development. Tereshin et al. [73], for example,

extend this notion to hybrid functional representations (HFReps) which allow obtaining a continuous smooth

distance field in En, preserving the advantages of conventional representations presented in this section. The

implicit volumetric representations even found use in standardized file formats used in 3D printing, namely

the .3mf specification with a volumetric extension described in [2].

1.2.2 Voxel Representation

Figure 1.27: Values of function g1 ∨ g2 on regular grid G ⊂
E3 of cell size cG = 1 with G = [2.5, 7.5]× [3.5, 8.5]× [7.5, 6.5]

composed of metaballs with radii R1 = 4 and R2 = 5, and

centers c1 = (3, 4, 4)⊤ and c2 = (4, 5, 4)⊤.

When dealing with volumetric data, one com-

mon approach is to represent it in the form of

a discrete field defined on a regular grid. This

means that the space containing the data is di-

vided into a set of evenly spaced cubes, each of

which represents a single unit of data. These

cubes, also known as voxels CG ⊆ G, can be

thought of as the 3D equivalent of pixels in a

2D image. By organizing the data in this way, it

becomes possible to manipulate it using many of

the same techniques used in 2D image processing,

such as convolution and filtering.

On the other hand, this approach has some

drawbacks. One of the main challenges is that

the grid-based representation can be quite heavy

on memory usage, particularly for large datasets.

This is because each voxel requires a significant

amount of memory to store its value, and when

dealing with volumetric data, there can be mil-

lions or even billions of voxels. As a result, tech-

niques like data compression and downsampling are often used to reduce memory requirements while still

maintaining a reasonable level of fidelity. Despite these challenges, the standard representation for volumet-

ric data remains the grid-based approach due to its flexibility and the wide range of tools and algorithms

available for working with this format.
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For the foundational domain of the voxel representation, we define the regular grid

G =

{
gi,j,k ∈ G ⊂ E3 : g0,0,0 = oG, ∥gi,j,k − g∥ = cG, g ∈ {gi±1,j,k,gi,j±1,k,gi,j,k±1} ∩G,

such that gi±1,j,k = gi,j,k ± (cG, 0, 0)
⊤ and vice versa, for (i, j, k)⊤ ∈ ZNx−1 × ZNy−1 × ZNz−1

}
(1.13)

of points with values f(gi,j,k) = fi,j,k. Value cG > 0 will be referred to as cell size.

Sampling any scalar field on G requires us to store NG = Nx×Ny×Nz floating point values with the grid

dimensions Nx, Ny, and Nz with floating point cell size cG > 0. To properly define G in Euclidean space,

we also need to specify the point of origin oG ∈ E3. The axis-aligned bounding box BG = (bG,min,bG,max)

(with oG = bG,min) of grid G then overlaps with G. If we consider voxels volumetrically, as axis-aligned

cubes of size cG, the true extent of the effective volume then reaches further outward into space into each

positive and negative direction by the half-size cG/2.

Figure 1.28: An illustration of the global grid

G constructed from input box B0 with cell size

cG = 1 containing two metaballs with different

effective radii.

Because in our applications where mesh surfaces are con-

verted to voxel fields (see Section 1.3.2) we depend heavily on

proper alignment of voxels with the imprinted shape. For this

reason, we introduce the notion of a global grid, namely com-

puting the number of cells as:

N−
x = ⌊bmin,x/cG⌋, N+

x = ⌈bmax,x/cG⌉, Nx = N+ −N−

for the x coordinate, and likewise for y and z. Operators ⌊·⌋,
⌈·⌉ are floor and ceiling respectively. Then the true bounds

BG of grid G have min and max points

bG,min = cG(N
−
x , N

−
y , N

−
z )⊤,bG,max = cG(N

+
x , N

+
y , N

+
z )⊤.

The resulting grid G is therefore guaranteed to be composed of

points whose coordinates are integer multiples of the cell size

cG (see Fig. 1.28).

1.3 Conversion Between Geometric Representations

Given all three main types of geometry mentioned in this chapter (see Fig. 1.29), the applications used

further in Chapter 2 and potentially in future research, we provide a short description of different types of

conversion algorithms. Considering the structure of our current practical application, with regards to the

voxelization of mesh inputs, we focus on the computation of signed distance fields in more detail (see Section

1.3.2).

1.3.1 Scalar Field Polygonization

We begin with the usually less complex set of conversion methods from both the functional and voxel

representations to a polygonal meshM (see Definition 1.1.8). Unsurprisingly, the process of meshing a voxel

field on a uniform grid G is less complicated due to the spatial restraints and finite resolution of the input

discrete structure.
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Figure 1.29: Conversion between three main types of geometric representations analyzed in this chapter: polygonal

mesh M, scalar voxel field fi,j,k, and a functional representation f .

Without regular sampling of the ambient space, the polygonization requires an approach similar to the

advancing front [67]. The resulting 2-mesh can be a Delaunay triangulation of a manifold surface. In 1996

Hilton et al. [28] were the first to achieve such reconstruction calling it marching triangles, while only a

few years later Bernardini et al. [8] published a similar result for point cloud inputs, referring to it as the

ball-pivoting algorithm. Since most practical volumetric data is voxel-based rather than functional, we can

move on to a series of polygonization techniques for regular grids G.

In 1987, Lorensen and Cline published the first algorithm for polygonizing voxel fields [51]. Theirmarching

cubes algorithm became perhaps the most widely used surface reconstruction technique of 3D image data,

with essential applications in medical imaging. The marching cubes is the most fundamental approach of

approximating the isosurface Sf = {x ∈ G : f(x) = c, c ∈ Im(f)} of field f , performing a simple linear

interpolation on the 8 edges of a single voxel cube CG ⊂ G to obtain mesh vertices v ∈ ∂CG on a given edge.

Value c will be referred to as isolevel.

These vertex configurations are then triangulated according to the 20 fundamental triangulations. More

precisely, there are 28 = 256 ways a surface Sf can intersect voxel CG. Lorensen and Cline [51] have reduced

the total number of configurations to 20 using symmetries. For performance reasons, however, almost all

implementations of the marching cubes algorithm in modern applications use two specialized lookup tables14

introduced by Paul Bourke in his 1994 blog post15 [13].

The drawbacks of the marching cubes algorithm lie mainly in both the polygon and the approximation

quality of surface Sf , as well as the potential to form non-manifold edges and vertices (see Section 1.1.2). The

most notable example of modern techniques handling this issue is the dual contouring algorithm, introduced

by Ju et al. [40], and further improved to avoid the construction of non-manifold tessellations by Schaefer et

al. [63], later made watertight by Rashid et al. [59]. The dual contouring is distinct from the marching cubes

14One for edge intersections Sf ∩ ∂CG and one for the vertex indices of the triangulation within CG.
15His C++ code snippets are sometimes referred to as ”the most copy-pasted code of all time”.
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by approximating the normals of the isosurface, and thus allowing sharp features like creases and edges of a

solid to be captured in the resulting surface shape (see Fig. 1.30).

Figure 1.30: The difference between the

marching cubes (MC) and the dual contour-

ing algorithm (DC) shown as polygonal voxel

slices (source: Ju et al. [40]).

More precisely, the original dual contouring approach is in-

spired by the extendend marching cubes technique looking for

sharp feature (dual) vertices x for each voxel CG minimizing

quadric error function

E[x] =

8∑
e=1

(n̂e · (x− pe)) = (Ax− b)⊤(Ax− b),

where A is a symmetric 3x3 matrix and b a column 3-vector.

The quadric error is then minimized using the QR or singular

value decomposition [63, 59].

Since we shall use our own feature-detection techniques

(see Section 2.4) during exterior surface extraction via shrink-

wrapping, and also exploit the adaptive remeshing method [23]

to improve triangle quality (see Section 2.5), the marching

cubes polygonization technique will suffice. The remeshing

methods themselves will not only provide a robust way to con-

trol edge sizing, but also balance out valences of individual

vertices.

1.3.2 Mesh Voxelization

Figure 1.31: Distance function d+ to a mesh with

an isosurface. When computed using the brute force

approach we need to compare distances to all mesh tri-

angles for each sampled point x.

The first step in the pipeline of our current applica-

tion (described in Chapter 2) is the conversion of im-

ported polygonal meshes into voxel fields. Due to the

nature of many applications such as 3D printing and

collision detection16, the shape of surface mesh data

needs to be propagated into its ambient space. In this

section, we focus on some approaches for generating

signed distance fields from input meshes.

Let Γ be a polygonal 2-mesh (see Definition 1.1.8)

and Γ ⊂ E3 its union. The distance function to set Γ

is defined as:

d+ : E3 → R+ : x 7→ inf
p∈Γ

{
∥p− x∥ : x ∈ E3

}
and its essential modification is

d± : E3 → R : x 7→ sgnΓ(x) inf
p∈Γ

{
∥p− x∥ : x ∈ E3

}
with the sign function:

sgnΓ(x) =

{
1, for x ∈ Int(Γ),

−1, for x ∈ Ext(Γ),
(1.14)

16Our particular application from Chapter 2 uses a continuous collision detection via a distance field.
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Figure 1.32: A 2D contour plot of (unsigned) dis-

tance d+ to a generating set Γ, showing rarefaction

fronts ρ and skeleton σ along with characteristics of

d+ emanating from Γ.

where Int(Γ) and Ext(Γ) are the interior and exterior

of a watertight surface mesh Γ (see Section 1.1.6). d± is

then called the signed distance function (SDF). We may

also use Γ interchangeably with Γ if the generating set

of the distance field is given as an implicit or parametric

curve or surface.

Since distance increases linearly away from each point

p ∈ Γ, giving rise to linear characteristics17. The in-

terior of the generating set also contains a bundle of

curves/surfaces σ which we call the skeleton of Γ. It is

a subset of Int(Γ) with a C1-discontinuity in both the

signed d± and unsigned d+ field. Region σ is sometimes

also referred to as the medial axis of the shape. Due to

the properties of Euclidean distance metric, points on Γ

itself also have a C1-discontinuity for the unsigned field

d+. If Γ is concave, the fields will also produce rarefac-

tion front regions ρ where the fronts of characteristics

spreading outward from Γ meet. This is also where the

field becomes C1-discontinuous (see Fig. 1.32). Convert-

ing from d+ to d± reduces the C1-discontinuity at the

generating set Γ.

The complexity of generating set Γ (or union of a mesh Γ) is, of course, imprinted on the field itself.

For this reason, we sample d+ or d± as a function on a discrete grid. Now let G be a regular grid with

100× 100× 100 = 106 voxels and let Γ have 5× 104 triangles, as it is in case of the Stanford bunny model in

Fig.1.31. Sampling d+ for all 106 grid nodes requires us to make 5× 1010 calculations in total for what will

be referred to as the brute force approach, taking several minutes even when computed on multiple threads.

Figure 1.33: The node boxes of an AABB tree (a), and

the voxel outline (b) of a simplified Stanford Bunny mesh

with NT = 5002 triangles and voxel cell size cG = 0.01.

Accelerating the, so called, distance query for

meshes has been a standard technique used in many

applications, especially game development. Sanchez

et al. [60], for example, test multiple possibilities com-

paring their computational efficiency. As mentioned

in Section 1.1.6, Bærentzen and Aanæs published the

angle-weighted pseudonormal approach in their 2005

paper [14]. Later on, Bærentzen also co-authored an

overview of the available methods for SDF computa-

tion with colleagues Jones and Sramek [39].

Bounding Volume Hierarchies

Distance and intersection queries need to be performed

on individual mesh primitives such as vertices, edges,

or triangles. Hence, we extract a triangle soup TΓ = {T0, ..., TNT
} from mesh Γ. By discarding all connectivity

information we can then extend the set of possible input meshes Γ from non-watertight to non-manifold. We

prepare a large-enough computational domain G of distance field d which contains Γ. For our applications

G is an axis-aligned box expanded from the bounding box BΓ by some offset o > 0. The following algorithm

17Curves γ : t 7→ γ(t) ∈ G (in the case of d) constant along the direction of the gradient ∇d(γ(t)) · γ′(t) = 1.
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then outlines the subsequent steps:

Algorithm 1: Computing SDF of input mesh Γ

Data: A mesh Γ with extractable triangle soup TΓ, offset value o.
Result: A set of (signed) distance values di,j,k sampled over regular grid G.

1 TΓ ← generate an AABB tree from TΓ;
2 generate OΓ given minimum cell size cmin,G > 0;

3 create grid G ⊂ R3 with dimensions of the bounding box of Γ and given cell resolution;

4 expand G by given offset o;

5 set exact distance values dexacti,j,k to grid points gΓ
i,j,k ∈ G that are centroids of octree OΓ’s leaf cells;

6 set di,j,k ←∞ everywhere else;

7 FastSweep(G, di,j,k);

8 compute sign of (G, di,j,k) using voxel flood fill;

The AABB18 tree TΓ (from line 1) is a binary bounding-volume tree for the selected collection TΓ of

geometric primitives. The nodes of TΓ are axis-aligned bounding boxes B = [bmin,x, bmax,x]×[bmin,y, bmax,y]×
[bmin,z, bmax,z] which both contain and intersect their respective subset of the triangle soup (see Fig. 1.33 (a)

for illustration). Our AABB tree contains references to actual triangle data only at leaf nodes. Searching

from the root node down towards a leaf has mean complexity O(logNT ), where NT = |TΓ| is the triangle

count. Once a leaf is reached, only a minimal amount of geometric primitives (triangles) needs to be iterated

through.

Algorithm 2: Mesh Distance-Octree

Data: An AABB tree TΓ of mesh Γ

Result: An octree OΓ with leaves forming an outline of mesh Γ.

1 C0 ←generate a bounding cube around Γ;

2 set C0 as the cube of the root node ON,0;

3 if C0.size() > cmin,G then

4 subdivide C0 into 8 subcells Ck, k = 1, ..., 8;

5 foreach Ck, k = 1, ..., 8 do

6 if Ck intersects mesh Γ using TΓ then

7 repeat from line 3 with C0 = Ck;
8 else

9 discard Ck;
10 end

11 end

12 break if max depth is reached;

13 else

14 d2min ← min{ squared distance of the centroid of C0 to T ∈
TΓ.GetIntersectingTrianglesWith(C0)};

15 end

We construct and search TΓ according to the kD-tree algorithm in Section 5.2 of de Berg et al. [21]. The

most computationally demanding step in the construction of TΓ is the search for optimal split position along

18Abbrev. for axis-aligned bounding box. But in some literature it is referred to as a kD-tree (k-dimensional).
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the longest axis of each non-leaf node’s box B. We use the adaptive resampling approach according to Hunt

et al. [34].

From line 2 in Algorithm 1, OΓ is an octree of mesh Γ constructed according to Algorithm 2. Our octree

OΓ is constructed only for a single purpose, that is: sampling exact distance values dexacti,j,k = dmin (see line

14 in Algorithm 2) on a subset of grid points gexact
i,j,k ∈ G, where G is the voxel grid where the distance values

(computed in Algorithm 1) are stored. Our spatial alignment corresponds to the fact that the grid points

gexact
i,j,k are centroids of leaf node cubes Cl of OΓ. The result is a voxel outline of mesh Γ in E3 (see Fig. 1.33

(b)).

Processing the Voxel Field

We know what the desired target voxel size cG of the resulting grid G will be (as an input parameter). Now

we need to estimate the initial bounding cell (cube) C0 (line 1 in Algorithm 2). Since octrees have at most 8

children for each of their nodes, we can compute the proper dimensions and position of the cube of the root

node C0. Let (βx, βy, βz)
⊤ = β = bo

Γ,max − bo
Γ,min be the size vector of the start box Bo

Γ (bounding box BΓ

of Γ expanded by offset o > 0). Then we choose βmax = max({βx, βy, βz}) and compute the expected depth

of octree OΓ:

De =

⌊
log2

(
βmax

cG

)⌋
, cG > 0 , βmax > 0.

The half-size of the octree’s root cube will then be s01/2 = cG2
De . For the root center of the root cube, we

choose the closest global coordinate ⌊
ci
cG

⌉
× cG , for i ∈ {x, y, z},

where ⌊·⌉ denotes round operation, and cΓ = (cx, cy, cz)
⊤ = 1

2 (bΓ,max + bΓ,min) is the center of BΓ and Bo
Γ.

Furthermore, we initialize grid G with numerical infinities everywhere (see line 8 in Algorithm 1), and

compute exact distances dexacti,j,k < ∞ at the grid points gΓ
i,j,k activated by the intersection with Γ. The

intersection query is, of course, accelerated with the help of AABB tree TΓ.

Figure 1.34: Contours of signed distance fields of six test meshes with NV vertices, NT triangles, and average

computation times for grid G of resolution approx. 2503 voxels on AMD Ryzen 7 3800x.
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Figure 1.35: Absolute error of the fast-

sweeping method compared to brute force

ground truth.

The computation of the remaining values follows by using the

fast-sweeping algorithm introduced by Zhao [77] (see procedure

FastSweep on line 7 in Algorithm 1). This technique relies on the

fact that d+ is a solution to a non-linear hyperbolic eikonal equa-

tion: ∥∇d+∥ = 1, and that the field d+ can be updated from 23 = 8

different directions along the characteristics of d+ (see Fig 1.32).

Field d+FS computed by the fast-sweeping technique, of course, has

some error which accumulates mainly around the corners of the

field grid (see Fig. 1.35).

Flood Fill and Pseudo-Watertightness

The flood fill algorithm (on line 8 of Algorithm 1, used, for example,

by Huska et al. [37]) recursively fills the grid with seeded values by

checking for processed neighboring voxels. As mentioned previously, voxels in the outline produced by

octree OΓ are frozen, that is: they cannot be processed by the flood fill. We first negate the grid values

di,j,k ← (−di,j,k) everywhere on G, and then find the first exterior voxel that is not frozen (i.e.: is not a part

of the voxel outline). Then the recursive voxel flood spreads through neighboring voxels switching the signs

of the values back to positive. If the outline voxels form a watertight shape, the interior voxels CG ⊂ Int(Γ)

keep negative sign in the distance values d±i,j,k < 0. This happens to be the case when the holes in Γ are

smaller than voxel size cG. If so, we may refer to Γ as a pseudo-watertight mesh.

Discussion

The performance measurements for our approach outlined in Algorithm 1 are presented in Fig. 1.34, Fig. 4.3,

and in [5] (with full comparison of specific subroutines in Fig. 9), and for 3 different CPUs with additional

settings. We also tested this approach against the pseudonormal technique by Bærentzen and Aanæs [14]

without oriented bounding boxes and ray casting, sampling every grid point gi,j,k ∈ G. The available nearest
primitive query pmp::TriangleKdTree::nearest [69] carries significant overhead for interpolating actual

nearest point for each triangle. Therefore our approach is nearly 200 times faster because it exploits locality

of the voxelization (see line 5 in Algorithm 1), but also of the fast-sweeping algorithm [77] which is O(|G|).
Due to the requirement for stack containers, the flood fill step remains to be the largest bottleneck in the

whole procedure.

1.3.3 Other Conversion Methods

The remaining forms of conversion between the main geometry representations outlined in Fig. 1.1 are

inherently associated with the functional representation. Although not used in the implementation of our

application from Chapter 2, they might find their use in our future work, and are thus worthy of brief

mention.

A voxel field from an implicit function defined on a simply connected domain G ⊂ E3 can be easily

obtained by simply sampling the values fi,j,k ← f(gi,j,k) on grid points gi,j,k ∈ G. The strategy for the

opposite direction, on the other hand, requires an approach similar to converting mesh data to implicit

functions, namely fitting some basis functions to the input spatial data.

While it may seem questionable whether we may be required to convert values at a voxel grid to an

FRep, one might imagine that in some future work, this option may well be considered, for example, to

construct implicit representations directly from image data. As mentioned above, fitting a set of functions

onto a dataset of mesh vertices [76, 47, 78].
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Chapter 2

Lagrangian Shrink-Wrapping

This chapter elaborates on the practical results achieved using a special technique for converting a voxel

or functional representation to a mesh surface. Alternatively, a mesh input can first be converted to implicit

or image data propagating its shape into the surrounding space, and then processed in such fashion.

In particular, this approach involves wrapping a mesh around an implicit or image representation of a

shape, and then processing the mesh to refine its shape and capture important details. The result is a highly

accurate and detailed representation of the original shape, which can be used in a variety of applications,

such as remeshing [44], segmentation [54], extraction of surface representation from point cloud input [20],

and the removal of hidden surface components to reduce complexity of the wrapped model [36]. In this

chapter, we will examine the underlying principles of Lagrangian shrink-wrapping, including the mathe-

matical foundations of the model. We will also explore the practical results achieved using this technique,

highlighting its strengths and limitations, demonstrating its potential in various real-world scenarios.

2.1 Lagrangian Surface Evolution

Analogously to an approach for simulating particle movement in fluid dynamics, the name Lagrangian

refers to modeling the points of a single contour or a surface rather than an entire field in E3. We will start

with a particular starting surface, for example, a sphere encapsulating the target shape in its interior, and

let the surface undergo evolution.

Definition 2.1.1. (Surface Evolution) Let X be a Riemannian 2-manifold. Then for time interval [0, T ] a

smooth map F : [0, T ]×X → E3 is called surface evolution in E3 if F t = F (t, ·) is an immersion of X into

E3 for all t ∈ [0, T ].

Figure 2.1: Shrink-wrapping evolution towards the Stanford Bunny with 80 time steps of length τ = 2.5× 10−3.
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Figure 2.2: Slice of distance field d to

surface Γ Utah Teapot with resolution 1203

and an evolving surface F driven by fields

d and −∇d.

According to [54], the velocity of the immersion ∂tF = v can be

decomposed as:

∂tF = vN + vT , (2.1)

where vN and vT are the normal and tangential components re-

spectively. Such decomposition is guaranteed by the condition that

F t is an immersion of X into E3. Equation (2.1) then needs to be

accompanied by an initial immersion F 0 = F (0, ·).
Throughout this chapter, we shall use the map F t and its image

Im(F t) for t ∈ [0, T ] interchangeably, and also if particular time t

is overlooked, we simply use F , referring to the evolving surface at

any time.

Fairing models, using k-th order Laplacian smoothing can be

formulated as ∂tF = ∆k
gFF (for more details see Sections 4.2 and

4.3 in [11]) with the given initial condition. ∆gF denotes the

Laplace-Beltrami operator on the surface with respect to the metric gF of its immersion F . For k = 1

we have

∂tF = ∆gFF = −HN , F (0, ·) = F 0, (2.2)

where H = κmin + κmax is the mean curvature with principal curvatures κmin and κmax, and N an outward-

pointing unit normal to the image of F .

First-order Laplacian smoothing is also known as mean curvature flow (MCF). Its only known compact

exact solution in E3 is the shrinking sphere: r(t) =
√
r20 − 4t with starting radius r0 which solves an ordinary

differential equation:

r′(t) = − 2

r(t)
, r(0) = r0.

Now let Γ ⊂ E3 be a target set, potentially a non-manifold surface (see Fig.2.2). Let d : E3 → R be the

distance field of Γ, taking either the unsigned d+ or signed d± form, the latter of which distinguishes the

interior Int(Γ) from the exterior Ext(Γ) of Γ with negative and positive sign respectively.

Figure 2.3: The difference be-

tween surface F evolving towards

Bent Chair mesh (see Fig. 3 in [5])

at 55th step with different values of

constant D2.

The target set Γ generates its distance field d in ambient space E3, and

for this reason, it can affect the evolution of F in the following advection-

diffusion model:

∂tF = ϵ∆gFF + ηN + ρvT , F (0, ·) = F 0, (2.3)

where ϵ, η are control functions for the two main components of evolution

in the normal direction (summing up to velocity vN in (2.1)). In our

experiments we choose ρ = ϵ. Using control functions:

ϵ(d) := C1

(
1− e−d2/C2

)
, C1, C2 > 0, (2.4)

η(d) := D1d
(
(−∇d ·N)−D2

√
1− (∇d ·N)2

)
,

D1 > 0, D2 ≥ 0, (2.5)

inspired by [37] using the distance field d to target Γ. With ϵ we ensure

that MCF slows down to zero as F approaches Γ, and η controls the orientation of unit normal N to surface

F (see Fig. 2.3). To make sure that F does not evolve past Γ under the influence of MCF, we can use

modified weight functions ϵ+ and η+ which are non-zero only for positive values d > 0.

Finally, the tangential movement of surface points with velocity vT is justified, according to [54], by the

fact that for simple MCF (2.2), point density tends to accumulate in areas with high curvature. For this
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reason Mikula et al. [54] propose two methods of tangential redistribution, namely area-based and length-

based. Huska et al. [37] introduce a more lightweight form of angle-based redistribution which homogenizes

angles of polygons at each mesh vertex. We chose the latter to help with point redistribution in accordance

with further adaptive remeshing technique applied in the finishing steps of the evolution of a discretized

surface F .

2.2 Discrete Model

2.2.1 Scalar and Vector Fields

Scalar and vector fields (d and −∇d) are sampled on regular voxel grids G with cell size cG > 0. We start

with an axis-aligned bounding box BΓ of Γ. Given an expansion offset oς = ςβmin, βmin = min ({βx, βy, βz})
with factor ς > 0 and size vector β = bmax−bmin of bounding box BΓ with min and max points bmin,bmax,

we define the field values on a voxel grid G ⊂ R3 using expanded bounds BΓ,oς (see Fig. 2.5). We use the

global grid approach from Section 1.2.2. d is computed using the technique from Section 1.3.2. The gradient

field ∇d : G→ R3 is computed using central difference:

∇di,j,k =
1

2cG

di+1,j,k − di−1,j,k

di,j+1,k − di,j−1,k

di,j,k+1 − di,j,k−1

 , i = 1, ..., Nx − 2, j = 1, ..., Ny − 2, k = 1, ..., Nz − 2,

and, of course, normalized to ensure ∇di,j,k/∥∇di,j,k∥ = ∇̂di,j,k ∈ S2, satisfying the eikonal equation ∥∇d∥ =
1 on G.

2.2.2 Mesh Surface

Figure 2.4: Two definitions of a co-volume Vi

around a vertex Fi of a triangular mesh. For

(a) the boundary vertices of Vi in the interiors

are line segments of a Voronoi region bound

to the surface, and in (b) the barycenters of

triangles form boundary ∂Vi.

The evolving surface F is approximated as a watertight

2-manifold triangle mesh with vertex set V = {F1, ..., FNV
}.

Since we need to extend our notation to 3NV -dimensional space

of the resulting linear system (2.7), as we mentioned in Section

2.1, instead of using bold symbols fi for mesh vertices (accord-

ing to Chapter 1), we refer to points of the surface using the

same symbol as that of the immersion F to distinguish the

points in E3 from those in R3NV .

The starting surface F 0 in our experiments will be an icosa-

hedral tessellation of a sphere (see Section 1.1.5) with sub-

division level s > 0 encapsulating the target set Γ. An i-

th vertex of a geometric realization of the surface at time

t = nτ ∈ [0, T ], n ∈ {0, ..., NT } will be denoted as F t
i . Value

τ > 0 will be referred to as the length of a time step.

Equation (2.3) modeling the evolving surface is discretized

using finite 2-volumes (areas) surrounding vertices. Co-

volumes tessellate the union of the surface F t forming a dual mesh to the pre-existing triangulation. The

concept of co-volumes (see Fig.2.4) and their use in expressing differential operators on surface meshes is

described in more detail by Meyer et al. [52]. Mikula et al. [54] use them to derive the balance of curvature

flow between mesh vertices, which converges to the smooth model of MCF with finer tessellations.

Let Vi ⊂ F t such that F t
i ∈ Vi be a co-volume around vertex F t

i . Then we proceed by integrating (2.3)

over each co-volume:∫∫
Vi

F t+τ
i − F t

i

τ
dµgt

F
=

∫∫
Vi

ϵti∆gt
F
F t+τ
i dµgt

F
+

∫∫
Vi

(ηtiN
t
i + ρtiv

t
T,i)dµgt

F
. (2.6)
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The Laplace-Beltrami term in (2.3) is discretized implicitly1 using cotangent scheme∫∫
Vi

∆gFF dµgF ≈
1

2

m∑
p=1

(
cot θi,p−1,1 + cot θi,p,2

)
(Fip − Fi)

(derived in Appendix A of Mayer et al. [52]) using cotangents of angles θi,p−1,1 and θi,p,2 opposing to each

edge eip = FiFip ∈ St({Fi}) from central vertex (see Fig. 2.4). The integral equation (2.6) transforms into a

system:

At
iiF

t+τ
i +

m∑
p=1

At
iipF

t+τ
ip︸ ︷︷ ︸

(AtF t+τ )i

= F t
i + τ(ηtiN

t
i + ρtiv

t
T,i)︸ ︷︷ ︸

(bt)i

,

for i = 1, ..., NV , where m is the valence of vertex Fi, with matrix coefficients:

At
ii =

(
1 +

τϵti
2µgt

F
(Vi)

m∑
p=1

(
cot θti,p,1 + cot θti,p,2

))
,

At
iip = − τϵti

2µgt
F
(Vi)

(
cot θti,p−1,1 + cot θti,p,2

)
,

where µgt
F
(Vi) are 2-dimensional Lebesgue measures of co-volumes Vi, and values ϵti and ηti are computed

with (2.4) from trilinearly-interpolated distance values dti at positions of vertices F
t
i . The matrix At of the

resulting system

AtF t+τ = bt, (2.7)

is diagonally-dominant and sparse. To impose Dirichlet boundary conditions on ∂F , we simply put At
ii = 1,

At
iip

= 0, and bti = f(F t
i ). If f is an identity, the boundary vertices remain fixed in space.

Optionally, velocity vT tangent to the surface at each vertex is computed using the angle-based approach:

vT,i = projT

(
ω

m

m∑
p=1

(
1 +

eip
∥eip∥

·
eip+1

∥eip+1
∥

)
(eip + eip+1

)

)
,

with weight ω > 0, where eip = Fip − Fi and eip+1
= Fip+1

− Fi are edge vectors from the central vertex Fi

belonging to a single triangle. Projection operator projT (v) = v − (v ·N)N with surface normal N projects

vectors v to tangent plane of F . Inspired by [37], this movement homogenizes angles of adjacent polygons

at vertex Fi.

Mikula et al. [54] also lay the theoretical foundations for a more complicated approach of tangential

redistribution, namely the (asymptotically uniform) 2-volume-based redistribution. The key insight from

this method is that one way to homogenize co-volumes is to assume that the ratio between volume density

(density of Vi per unit of surface area) and total surface area approaches a constant as t → ∞. This leads

to the construction of a (pull-back) vector field determined by the gradient of an unknown redistribution

potential ψt defined on F t which needs to be evaluated for each time step as a solution of a Poisson problem.

Linear system (2.7) is solved for each vertex Fi and time step. Additional remeshing operations can

be applied to increase mesh quality. The method is implicit in the Laplacian term, and explicit in time,

therefore we refer to it as a semi-implicit formulation.

1For time t+ τ and t computed in the previous step.
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2.3 Numerical Stability

Figure 2.5: Under the stability assump-

tion we consider that an icosahedral tes-

sellation of a sphere F 0 evolves into an ex-

pected sphere F r with radius r > 0.

According to Section 3 in [53], the semi-implicit finite volume

approach for curves in E2 leads to stability constraint τ ≈ h2 where

h > 0 is a spatial step and τ > 0 a time step. In the co-volume

formulation on F this translates to

τ ≈ µ(V ), (2.8)

where µ(V ) is the 2-dimensional Lebesgue measure of a co-volume

V of an arbitrary vertex in F . Theoretically, large deviations from

(2.8) should result in the formation of singularities in F . Practically

however, the variability of measures µ(V ) in unstructured meshes

implies only an approximate control.

In Section 2.4 of [5], we introduced a scale-based heuristic for

securing numerical stability and simulated the results in Section

4.3. Simply put, when performing time iterations on surface F , we

scale it uniformly by factor:

ϕ =

√
τ

σµr(V )
(2.9)

derived from (2.8) for some shrink factor σ > 0, and apply inverse scaling when we want to transform

the result into the original size. Since F takes an a priori unknown shape in the last time step T = Ntτ ,

we can only approximate the predicted mean co-volume measure µr(V ) as the mean area of co volumes

V of homogeneously distributed vertices on an expected sphere F r with radius r > 0. Sphere F r is an

approximation of F at end time T undeformed by the effects of target shape Γ.

In our experiments, we use an empirical estimate

r ≈ 0.4(βmin + (0.5 + ς)βmax) (2.10)

where βmin and βmax are the minimum and maximum sizes of target set bounding box BΓ, and ς is the

expansion factor (see Section 2.2.1). The measure estimate for evenly distributed Ns
V vertices on a sphere

is:

µr(V ) =
4πr2

Ns
V

.

where we evaluate vertex countNs
V of an icosahedral tessellation of a sphere with subdivision level s according

to Theorem 1.1.2 with N0
V = 12, N0

E = 30.

Different shrink-wrapping schemes, such as the isosurface evolution in Section 2.7.2, yield different sta-

bility schemes to satisfy criterion (2.8). In particular, if the starting surface F 0 is an isosurface generated

by the marching cubes algorithm (see Section 1.3.1), the voxel size cG > 0 of the triangulated grid G gives

a suitable estimate for the co-volume measure.

The triangle T with the largest area that can fit into a cube voxel with size cG has area
√
3
2 c

2
G. The size

of the barycentric co-volume VcG corresponding to the aforementioned triangle is, of course, 1
3µ(T ). Such

triangle can then occur in four neighboring voxels sharing a central vertex F i (see Fig. 2.6 (a)). Therefore

we have

µ(Vi) =
2
√
3

3
c2G, (2.11)

which is then just substituted to (2.9) for the co-volume measure.
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Figure 2.6: Estimated co-volumes constructed by polygonizing a scalar field in four neighboring voxels.

We should note that the configuration in Fig. 2.6 (a) does not maximize the measure. Replacing the

maximal equilateral triangle with two right triangles with hypotenuse aligned with the voxel diagonal (Fig.

2.6 (b)) yields larger measure

µ(Vi) =
4
√
2

3
c2G. (2.12)

Another assumption in this case is homogeneity of the distribution of mesh vertices along the starting

isosurface F 0, which is certainly not guaranteed by the interpolated positions of vertices at voxel edges. To

secure this criterion, we simply run one iteration of adaptive remeshing on starting surface F 0 before starting

the evolution.

2.4 Feature Detection

Figure 2.7: A trade-off between local triangle quality and

feature detection: Results after using cosine-based (a) and

curvature-based (b) feature detection. Points of the target

surface (Stanford Bunny) are shown in blue.

In mesh processing, features refer to distinctive

subsets of the mesh surfaces, such as sharp corners,

creases, and boundaries, which carry important in-

formation about the shape of the object being repre-

sented. Accurately identifying and preserving these

features is important for downstream applications,

and can simplify processing by providing a suitable

level of abstraction.

Feature elements (vertices and edges) require a

slightly different treatment during evolution. We

need the sensitivity to true features2, and on the

other hand avoid marking false positives at convex-

dominant saddle (CDS) points (see Definition 2.4.1).

The most straightforward approach is to mark all edges e with a large-enough dihedral angle αe. This

approach is implemented in the PMP library [69] for cosines3 (Ni ·Nj) = cosαN with unit normals Ni and

Nj to faces sharing edge e. This, however, leads to the loss of sharp protrusions such as limbs or ears (see

Fig.2.7) because the evaluation has only one degree of freedom, favoring sharp edges surrounded by relatively

flat patches specific for artificial objects. These do not arise naturally as a consequence of flow (2.3) and are

difficult to enforce even manually for organic target shapes.

Since we require an automatic process during surface evolution, we propose a vertex-based detection

evaluating the angle of mean curvature γ = Hl where l is the arc length of smooth surface F . In the discrete

2Stemming from the shape of generating set Γ.
3The dihedral angle is then αe = αN + π/2, but cosαN suffices for the binary feature/non-feature evaluation.
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setting we evaluate γi at vertex F i = Fi using neighborhood mean edge length:

l =
1

m

m∑
p=1

∥eip∥,

also used by Smith [70] to estimate the local radius of curvature for a surface update term. For mean

curvature we use the cotangent estimate by Meyer et al. [52]:

Hi ≈
1

4µ(Vi)

m∑
p=1

(
cot θi,p−1,1 + cot θi,p,2

)∥∥Fip − Fi

∥∥.

Figure 2.8: (a): An estimate of mean curvature angle γ

at vertex Fi. (b): The imbalance of principal curvatures

κmax and κmin at a convex-dominant saddle vertex. The

color values show mean curvature H.

Using γ we convert mean curvature H to a scale-

invariant quantity. Vertices with γ = 2lH < γcrit
are marked as feature. Unfortunately, this alone

leads to a decrease of mesh quality in CDS vertices

(see Definition 2.4.1).

In our further evaluation, we require principal

curvatures:

κmax,i = Hi +
√
H2

i −Ki

κmin,i = Hi −
√
H2

i −Ki

where Ki is the Gaussian curvature estimate:

Ki =
2π −

∑m
p=1 θip

µ(Vi)
, θip = arccos

(eip · eip+1
)

∥eip∥∥eip+1∥
,

according to [52].

Definition 2.4.1. (CDS Points) Let the image of F be a 2-manifold surface in E3 with principal curvatures

κmax and κmin. Saddle points where

|κmax| < K|κmin|, K > 1,

are said to be convex-dominant saddle (CDS) points (see Fig. 2.8 (b)).

CDS vertices can become false positives for feature detection, and thus we propose not to mark them.

Additionally, we should also not mark vertices with valence m > 6 because the following adaptive remeshing

steps will avoid fixing them.

2.5 Adaptive Remeshing

[23] and [10] describe a remeshing framework for triangle meshes based on topological operations such as

split, collapse, and flip. It can be repeated Nrem > 0 times using the adaptive technique which also preserves

the positions of edges and vertices marked as feature (see Section 2.4).

Considering scale bounds discussed in Section 2.3, the sizing for remeshing is computed from the edge

lengths of the icosahedron:

lmin = 2λminr sin
(
γico2

−(s+1)
)
, lmax = λmaxlmin, (2.13)

38



Figure 2.9: The effect of changing approximation error εrem after 80 time steps for adaptive remeshing as a multiple

of minimum edge length lmin = 0.0799 of Armadillo (in stabilized scale ϕ = 0.0261).

where γico = 2π/5, λmax > λmin > 0 are controllable scale factors, and r the radius of (properly scale-

adjusted) geodesic icosahedron of subdivision level s.

For the isosurface evolution (see Section 2.7.2) we have

lmin = λmin

√
2cG, (2.14)

where cG is the cell size of the triangulated scalar grid (see Fig. 2.6 (a) for the preferred equilateral

configuration).

Combined with error εrem = max {∥F − F∥} between linear approximation F and surface arc F , we

obtain adaptive sizing values for all edges [23]. For our evolving surface, the sizing needs to be adapted to

stabilized scale ϕ. It should also be noted that strong (low-εrem) adaptivity may adversely affect co-volume

sizing necessary for stability (see Fig. 2.9), especially for feature vertices.

2.6 Complete Algorithm and Implementation

At last, we have all the tools necessary to implement the ensuing algorithm of this chapter. In this

section, we provide a broader outlook on our implementation, combined with the detailed insights on the

particular steps in the shrink-wrapping algorithm and the details of their implementation when necessary.

The full C++ implementation with the complete list of parameters (which exceeds the scope of this section)

can be found in the GitHub repository Implicit Surface Wrap [6] in method Evolve of classes SurfaceEvolver

or IsoSurfaceEvolver. In the diagram of our application’s key architecture in Fig. 2.10, we separate the

computation of signed distance d and surface evolution as two distinct functionalities, even though they are

combined in Algorithm 3.

Figure 2.10: The architecture of our application. Dashed arrows denote the uses relation.
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The main loop of the algorithm will simply perform the update of the evolving surface F , while the

surface and the distance field d and its negative gradient −∇d will need to be prepared in the preprocessing

stage. This stage also incorporates the construction of the starting surface F 0 which can be either a properly

centered icosahedral tessellation of a sphere with radius r (computed according to (2.10)), or an isosurface

Sd0 for a given isolevel d0 ∈ Im(d±).

Now we proceed to outlining the overall algorithm in pseudocode:

Algorithm 3: Shrink-Wrap of a Target Surface Γ

Data: A mesh F 0 (preferrably of higher quality than Γ), a target mesh Γ, time step size τ , number

of time steps Nt, adaptive remeshing parameters λmin, λmax etc., offset oς , tangential

redistribution weight ω;

Result: Meshes Ft for each time step, and the result Fts

1 (d : G→ R)←ComputeSDF(Γ, oς);

2 F 0 ←BuildStartingSurface(Γ, oς);

3 Estimate co-volume measure µ(V ) from starting surface F 0;

4 ϕ←
√
τ/(σµ(V )); F 0 ←MϕF

0; G←MϕG;

5 compute −∇d;
6 compute lmin and lmax (according to (2.13) or (2.14));

7 for t = τ ; t < ts = Ntτ ; t+ = τ do

8 ComputeNormals(F t);

9 compose and solve linear system AtF t+τ = bt (possibly with tangential redistribution vT ̸= 0);

10 F t+τ ←UpdateVertices(F t+τ);

11 if do remeshing & t > trem then

12 DetectFeatures(F t+τ);

13 F t+τ ←AdaptiveRemeshing(F t+τ , lmin, lmax, εrem);

14 end

15 end

The ComputeSDF function on the very first line is implemented according to Algorithm 1. With regard

to the following step, BuildStartingSurface may represent either the construction of an icosahedral tes-

sellation of a sphere encapsulating Γ, or an isosurface of the distance field d : G→ R, potentially re-sampled

to obtain target discretization. Each vertex of the starting surface F 0 is transformed by matrix Mϕ with

isotropic scaling component ϕ computed according to Section 2.3 depending on the tessellation of F 0. The

same transformation needs to be applied to the voxel grid G so it aligns with the original position of the

surface in the distance field.

For each time step t = 0, ..., Ntτ = T we need to evaluate unit normals N t
i for each mesh vertex F t

i

in ComputeNormals, and fill the available data into the linear system according to Section 2.2.2. We use

the BiCGSTAB solver with IncompleteLUT preconditioner from the Eigen library4. Afterwards, our evolving

mesh surface needs to be updated (see line 10 in Algorithm 3), and then post-processed.

We define a time step trem ∈ {τ, 2τ, ..., T} after which DetectFeatures (see Section 2.4), and AdaptiveReme

-shing (Section 2.5) are called. The reason for this delay is the lack of necessity for the changes in tessellation

at the early stages of evolution, especially for the shrinking sphere approach. With the tessellation-changing

operations applied on F t+τ during adaptive remeshing, the amount of vertices NV of the surface will likely

change. Hence, the dimensionality of the linear system at line 9 in Algorithm 3 will require adjustment for

each time step.

4PMP also uses Eigen internally for matrix and vector representations.
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Figure 2.11: Regions of stability (light blue) where evolution

completed Nt ≥ 200 steps without failure. The black curves

denoted by ϕmin and ϕmax are the bounds for ϕ by the starting F 0

and the expected surface F r. βmin denotes minimum dimension

of the bounding box of the target surface Γ. Yellow and red

regions correspond to evolutions that failed after Nt ∈ [50, 200)

steps and Nt < 50 steps respectively.

2.7 Results

2.7.1 Shrinking Sphere

First, we verify the stability assumptions

outlined in Section 2.3, specifically for the

shrink-wrapping with sphere. The failed evo-

lutions represent immersions F of mesh which

have accumulated so many errors that a sub-

stantial portion of their vertices reach beyond

the expanded bounds BΓ,oς (Section 2.2.1).

We can then evaluate stability based on the

number of steps until such explosion of points

occurs.

The first series of results (without adaptive

remeshing) can be seen in Fig. 2.11 for meshes

Bunny and Armadillo. The weight function ρ

of angle-based tangential velocity vT is identi-

cally one (left) or 1− e−d2

(right), while using

partial advection term η with D = 0. Ad-

ditional stabilization is achieved by using a

distance-dependent weight function ρ.

After introducing adaptive remeshing (Sec-

tion 2.5) we ensure some level of homogeneity

of co-volumes V around vertices of the evolving

surface F . Since scaling (2.9) can be weighed

by shrink factor σ > 0, we first assume σ = 1,

and observe the values of co-volume measures

µ(V ) for each vertex during Nt = 80 steps.

From measures shown, for example, in Fig.

2.12 we deduce µ(V ) ≈ τ/5 most of the time,

Figure 2.12: The range of co-volume measures [µmin, µmax] for four different settings with results F 80τ on the right.
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Figure 2.13: Triangle metrics θmin (minimum angle), θmax (maximum angle), and κ(J∆) (condition number of

equilateral triangle Jacobian) evaluated for different minimum sizing factors λmin.

Figure 2.14: A comparison of the quality metric

κ(J∆) for model (2.3) with D2 = 1 on Armadillo

mesh with and without remeshing with our feature

detection approach with vertex counts NV .

so we put σ = 1/5. It is evident that without remeshing,

values µ(V ) fluctuate even above the time step size τ , and

thus lead to the accumulation of numerical errors.

We proceed by running the evolution model with all of

the parameters mentioned above on other meshes, includ-

ing the evaluation of triangle metrics from Section 1.1.8.

A sample of the tests is run for two different values of

adaptive sizing λmin = 0.14 and 0.17 (see Fig. 2.13). The

maximum edge length factor is kept at λmax = 4 while the

critical angle for feature detection is kept at γcrit = π/2.

The sizing factor λmin is sensitive to input down to sec-

ond decimal place. This can be advantageous for second-

order sizing, complementing subdivision s of F 0. The use

of Voronoi contra barycentric Laplacian (see Fig. 2.4)

differs only for some cases in the location of emerging

instabilities.
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The values of quality metrics in Fig. 2.13 remain mostly within bounds [π/6, π/3] for θmin, [π/3, π/2]

for θmax, and [1, 1.3] for κ(J∆). In Fig. 2.14, we notice the major difference in quality metric κ(J∆) in an

80-time-step result of our previous implementation [5] and the approach using remeshing with λmin = 0.14,

Nrem = 3, K = 2, and using back-projection.

2.7.2 Evolving Isosurface

Figure 2.15: Evaluation of quality metric κ(J∆)

for three target surfaces with higher genus after

Nt = 20 time steps of size τ = 0.05.

Icosahedral tessellation of the sphere encapsulating target

set Γ cannot change its genus during evolution outlined in

Algorithm 3. Therefore we concluded that the most straight-

forward way to wrap surfaces with genus g > 0 is to con-

struct F 0 using a scalar field polygonization technique such

as marching cubes (see Section 1.3.1). In this case, we use

the specialized stabilization technique mentioned in Section

2.3, namely formulas (2.11) or (2.12).

Choosing the proper isolevel d0 ∈ Im(d±) for signed dis-

tance d± on G becomes a crucial step when we want to make

sure the starting surface evolves towards a shape with the

same genus as target Γ. For the purposes of this evaluation

we simply measured the interior diameters of individual holes

of each input mesh Γ, and estimated the isolevel d0 for the

starting isosurface.

We also tested re-sampling voxel fields G→ R to obtain

different level of detail for the evolving mesh. In other words:

increasing or decreasing voxel size cG, and trilinearly interpo-

lating the original grid values, so that the triangles produced

by the marching cubes algorithm have a certain mean edge

length. The preprocessing, however, still requires at least

one step of remeshing to homogenize co-volumes V . Since

remeshing provides substantial control of the size of triangles and thus also of the co-volumes, re-sampling

is not required. In fact, remeshing accompanies isosurface evolution from its beginning t = trem = 0.

The more stable version of the tests shown in Figures 2.16 and 2.15 (without substantial fluctuations

in µ(V )) used scaling factor ϕ computed with measure estimate (2.12). Throughout the test we also set

minimum edge multiplier λmin = 0.4 for adaptive remeshing (Section 2.5). Except for a slightly smaller

critical mean curvature angle γcrit = 0.4π the remaining parameters are the same as for shrinking sphere

tests in Section 2.7.1.

Figure 2.16: Shrink-wrapping of Rocker Arm (INRIA) mesh Γ with genus 1 showing values of distance d
∣∣
F

to Γ

interpolated for surface F after 0, 10 and 20 time steps of length τ = 0.05. The starting isosurface was tessellated

for isolevel d0 = 0.06.
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2.8 Discussion

Lagrangian shrink-wrapping of target sets Γ by an evolving surface F outlined in this chapter is an

unconventional method for extracting mesh surfaces from implicit or voxel field representations of solid

objects or point cloud data. The semi-implicit finite volume formulation of model (2.3) examined by Mikula

et al. [54] and further developed by Huska et al. [37] presented a series of challenges, mainly relating to the

numerical stability of the model. We solved the issue of stability for icosahedral tessellations of a sphere

(see Fig. 1.18) encapsulating the target set Γ in Cavarga [5]. The stabilization is described in more detail in

Section 2.3.

Furthermore, we improved upon our previous work mainly by introducing adaptive remeshing (Section

2.5) and curvature-based feature vertex detection (Section 2.4). On top of using encapsulating spheres as

starting surfaces, we extended our approach to surfaces with higher genus by utilizing remeshed isosurfaces

computed by the marching cubes algorithm and remeshed during preprocessing.

Although Lagrangian surface evolution models with advection fully wrap a subset of meshes, an extension

of this approach to general geometries demands further inquiry. We would also like to point out that only

a small sample of possible approaches to tangential redistribution have been tried. The shrink-wrapping

implementation would certainly benefit from splitting and/or decimation subroutines for minimal surface

regions of the solution F .

Eventually, Algorithm 3 can be extended to quadrilateral meshes, as in [37], with additional analysis of

stability for changing density of mesh vertices.
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Chapter 3

View and Data-Dependent

Triangulation

In Chapter 2, we explored the technique of shrink-wrapping, which allows us to generate a 3D surface that

conforms tightly to an object’s shape. While this method may be pushed to its limits with high level of

detail (LOD) of the output surface, it does not reduce the exterior complexity of the resulting mesh. As we

move forward in our discussion, we must consider practical solutions for managing the increasing complexity

of geometric data.

In this chapter, we will be building upon the fundamental concepts discussed in Chapter 1, and exploring

practical solutions in the context of the latest advancements in geometric conversion, compression of spatial

data, and high-performance real-time rendering. As we delve deeper into the world of modern geometry

processing, we continue to face the challenge of dealing with large datasets, a problem that has been present

since the early stages of this field.

Advancements in hardware performance and the increasing use of parallel processing have made it possible

to seamlessly render meshes with millions of polygons. However, as we continue to increase the memory and

computational load, achieving real-time response in a user-friendly application becomes more challenging.

To address this issue, we must turn to additional techniques for compression and simplification of the input

geometry. Balancing the need for high performance with the desire for fidelity and quality of triangulation

(see Section 1.1.8) is an ever-present challenge that requires careful consideration.

In Section 1.3, we explored various techniques for geometric conversion, including the use of triangulation

to represent 3D surfaces as a mesh of triangles. In this chapter, we will focus on view and data-dependent

triangulation of mesh surfaces. By adapting the triangulation of the mesh to the viewpoint of the user or

the characteristics of the data being displayed, we can optimize performance while maintaining a high level

of fidelity.

Overall, this chapter will provide an in-depth examination of the challenges and solutions related to

dealing with large datasets in the context of real-time rendering. We will explore the use of view and data-

dependent triangulation as one approach to balancing the need for high performance with the desire for

accurate and detailed representation of geometric data.

3.1 Mesh Optimization on Progressive Meshes

Techniques of mesh optimization, also referred to as simplification or decimation, are used to reduce the

complexity of polygonal meshes while preserving their visual appearance. One of the most notable results

in this area is the development of the quadric error metric (QEM) by Garland and Heckbert [24], which
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provides a measure of the error introduced by mesh simplification and can be used to guide the simplification

process. An intriguing approach which we shall elaborate on in this section was introduced by Hugues Hoppe

who published a series of results [32, 29, 30] stemming from the concept of progressive meshes produced from

two atomic types of tessellation-changing operations (see Section 1.1.5), namely: edge collapse Θ and (its

inverse) vertex split Θ−1, using a specialized energy functional that can be used to optimize the connectivity

of a mesh while preserving its geometric shape.

3.1.1 Progressive Mesh Representation

According to Hoppe [29], an input 2-manifold triangle mesh M̂ can be reduced via a series of NΘ > 0

edge collapses Θ into its minimal representationM0. that is:

M̂ =MNΘ

ΘNΘ−17−→ MNΘ−1

ΘNΘ−27−→ ...
Θ17−→M1

Θ07−→M0. (3.1)

Sequence {Θi}NΘ−1
i=0 of edge collapses needs to be chosen so that the quality of the approximationMi, i ∈

{0, ..., NΘ − 1} is maximized.

Definition 3.1.1. (Progressive Mesh) An ordered pair (M0, {Θ−1
i }

NΘ−1
i=0 ) is called a progressive mesh.

Hence, all information needed to produce any mesh in the LOD sequence (3.1) is stored in the simplest

base mesh, and a log of edge splits Θ−1
i , i ∈ {0, ..., NΘ − 1} (see Fig. 3.1).

Moreover, we can also interpolate between meshesMi+1 andMi which only differ by a single tessellation-

changing operation Θ−1
i (see Definition 1.1.27). The interpolated mesh Mλ

i+1 parametrized by λ ∈ [0, 1)

has the same combinatorial structure as meshMi+1 from the previous step in simplification. These meshes,

referred to as geomorphs, can be used for continuous transition between different LODs for a progressive

mesh. In fact, geomorphs can be constructed between any two meshes in the progressive mesh representation.

This is possible because for l ∈ {1, ..., NΘ} a composition of edge collapses AΘ = Θi1 ◦...◦Θil is surjective [29].

3.1.2 Optimization With Progressive Meshes

The goal of Hoppe et al. [32] was to find a mesh M that provides a good fit for a set of points

{x1, ...,xM} ⊂ E3 with a small-enough number of vertices. This reduces to an optimization problem for

an energy function:

E(M) = Edist(M) + Erep(M) + Espring(M), (3.2)

with distance and representation energies:

Edist(M) =

M∑
i=1

d2(xi,M), Erep(M) = crepM, crep > 0,

Figure 3.1: A sequence of progressive meshes of the Stanford Dragon for different triangle counts NT . Source:

lecture slides [31].
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Figure 3.2: The space of meshes

{M} illustrated as the shaded re-

gion in the (NV , Edist)-plane where

NV is the vertex count. The solid

lines represent optimization paths

for different values of representa-

tion weight crep.

where d(x,M) = infp∈M{∥x− p∥} is the Euclidean distance to mesh

M, and spring energy for each edge:

Espring(M) =
∑
e∈M

κ∥v(0)
e − v(1)

e ∥2.

Point set {x1, ...,xM} is chosen on the input mesh M̂ randomly over its

vertices as well as on faces.

The overall energy function (3.2) is minimized over the space of all

meshes {M} available for starting mesh M̂ via edge collapses Θ (see Fig.

3.2). Optimization, described in [32], consists of two loops (outer and

inner). The outer loop optimizes over the combinatorial data choosing

from a set of legal moves which represent operations Θ, Θ−1, and an edge

flip Φ included to allow the optimization to ”tunnel” through small peaks

in energy function (3.2). The inner loop, on the other hand, optimizes

vertex positions. For performance reasons, the inner loop optimizes only

one vertex position v, and considers only the effect of vertices in the

neighborhood N (v). To avoid producing self-intersections, the maximum

dihedral angle of edges in N (v) cannot exceed a given threshold [29].

Figure 3.3: The vertex hierarchy forming a forest

in which the roots of the binary trees are the vertices

of the coarsest mesh M0. The leaves, on the other

hand, represent the original mesh M̂ with the highest

LOD. Source: Hoppe [30].

Figure 3.4: View-dependent refinement of the Stan-

ford Bunny mesh, tessellated according to the view

frustum shown as orange slicing planes in the left

view. Source: Hoppe [30].

3.1.3 View-Dependent Refinement

In [30], Hoppe presents a method for dynamically re-

fining a simplified 3D mesh model based on the viewer’s

position which is further optimized in [33] by paralleliza-

tion. The view-dependent refinement algorithm builds on

the concept of progressive meshes (see Section 3.1.1) by

allowing the mesh to be refined in regions that are close

to the viewer, while maintaining a lower level of detail

in more distant regions. This results in a more efficient

representation of the mesh during rendering, allowing for

faster rendering times and reduced memory usage.

According to [30] a loaded progressive mesh

(M0, {Θ−1
i }

NΘ−1
i=0 ) can be used to construct a vertex hi-

erarchy (see Fig.3.3) with meshM0 with the lowest LOD

forming the sequence of root vertices for the forest of bi-

nary trees storing mesh vertices. The parent-child rela-

tion in the hierarchy corresponds to operation Θ−1 pe-

frormed on a vertex.

View-dependent refinement uses a specialized query

function, qrefine, which filters vertices v that should

not be split based on the current view according to the

following criteria:

(1) v is outside of the view frustum.

(2) v belongs to an edge e in the backfacing region ofMi.
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(3) The screen space error of v is less than some tolerance.

The parameters for the computation of screen space error are computed for each vertex during the construc-

tion of the progressive mesh representation. Since the filtering function is evaluated many times per frame,

it needs to be fast.

Resulting selectively-refined meshMS is then chosen as a view-dependent cut of the vertex hierarchy by

using the three filtering criteria. IfMA andMB are two distinct selectively-refined meshes (for two different

view frusta, for example), we can geomorph between them in O(NA
V + NB

V ) time in the worst case, where

NA
V and NB

V are the vertex counts of the two meshes [29].

3.2 Mesh Compression

Progressive meshes (M0, {Θ−1
i }

NΘ−1
i=0 ) (see Definition 3.1.1), introduced by Hoppe [29], have lower mem-

ory requirements than that of the typical input M̂. The locations of the vertex split operations Θ−1
i can

be encoded more concisely than by storing all three indices of vertices v∗
e,v

L, and vR, and since Θ−1
i has a

local effect, significant coherence in position data can be expected. For example, since the positions of v
(0)
e ,

and v
(1)
e after splitting v∗

e can be predicted, and do not need to be stored.

The above approach provides high compression ratios with minimal loss of visual quality, making it

well-suited for applications that require efficient storage and transmission of 3D mesh data. The use of a

simplified sequence of meshes also makes it possible to render the mesh at different levels of detail, depending

on the available memory capacity.

As the size of the input mesh M̂ grows, however, the number of vertices in the vertex hierarchy also

increases, making it more difficult to store and transmit the compressed mesh efficiently. This can result

in longer compression and decompression times, as well as increased memory usage. To address this issue,

researchers have proposed various extensions and modifications to the progressive mesh data structure.

In their 1999 paper, Cohen et al. [19] proposed a new algorithm for compressing progressive meshes

(PMs) that addresses some of the limitations of Hoppe’s original PM algorithm, including the storage size

of the PM data structure. The main idea was to use triangle strips to further reduce the storage size of the

data structure.

Alliez and Desbrun [4] claim that removing a vertex of valence more than six can increase entropy and

result in a lower compression rate. Thus, this strategy is not ideal for a compression algorithm that aims

to minimize bit cost. They also introduced an inverse
√
3 simplification process that maintained valence

regularity during progressive encoding.

3.3 The Cutting Edge: Virtualized Geometry Pipeline

View-dependent geometry optimization has seen significant advancements in recent years, and one of the

most notable developments in this area is the Virtualized Geometry pipeline. This cutting-edge technology

is a key feature of the Nanite�system, which is a revolutionary real-time rendering technology introduced in

Unreal Engine 5�.

The Virtualized Geometry pipeline leverages hardware-accelerated virtual texturing and sparse virtual

texturing techniques to render large and complex scenes with extremely high levels of detail. This is achieved

by dynamically streaming in and out portions of the scene’s geometry as needed, based on the viewer’s posi-

tion and other factors such as object occlusion and LOD management. The pipeline allows for the rendering

of millions of triangles per frame, while minimizing memory usage and improving performance compared to

traditional geometry processing techniques. This new technology has the potential to revolutionize the way

3D graphics and visualization are implemented, allowing for the creation of more detailed and immersive

virtual environments than ever before.
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Figure 3.5: A visualization of micropolygon clusters in the Nanite pipeline. Source: Brian Karis [41]

At its core, Nanite�uses a virtualized micropolygon geometry representation [15], where the mesh is

divided into small, fixed-size triangles called micropolygons. These micropolygons are then stored in a

sparse voxel octree (SVO) structure [45]. Organized into clusters (see Fig. 3.5), the micropolygons can then

be used for culling. During rendering, the SVO is traversed and only the visible micropolygons are rasterized,

resulting in high performance and efficient memory usage.

In addition to micropolygon rendering, Nanite�also supports various advanced features such as dy-

namic global illumination and volumetric fog. The pipeline is optimized for modern hardware architec-

tures, including multi-core CPUs and GPUs with hardware-accelerated ray tracing capabilities. Overall,

Nanite�represents a significant step forward in real-time rendering, enabling developers to create more im-

mersive and detailed scenes than ever before.
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Chapter 4

Project of Dissertation

The final chapter focuses on our research goals for the remainder of the PhD study. We plan to simplify

meshes using shrink-wrapping to load large files, and explore texture data and volumetric representations.

The chapter is divided into three sections, each addressing a potential research direction.

4.1 Previewing Large Mesh Files

Despite the extent of advancements from the hardware side, large polygonal datasets, with representations

exceeding memory capacity of the application process, still pose a problem. Although the working memory

can be extended in many applications, such as MeshLab�, the performance of the rendering pipeline itself

is often not optimized for gigabytes of input data. The datasets themselves, on the other hand, only seem

to grow in size due to modern high-resolution photogrammetry and 3D scanning.

LetMmax be the input mesh with a very large amount of vertices and connectivity data stored in a file.

We propose the following approach:

Figure 4.1: Proposal for the pipeline for the simplification of large mesh files.
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(1) Read the vertex buffer V of the input data in parallel, using for example mmap1, and stream it as point

cloud data into the next stage.

(2) Construct a kD-tree TV for the point cloud data V , and select a subset Ṽ ⊂ V with much smaller

cardinality than the original data using the kD-tree’s radius search query. Namely, for some point

v ∈ V we randomly choose the next vertex within radius r > 0 from v.

(3) The reduced point cloud Ṽ is then either triangulated using a Delaunay-based technique [8]. Given

vertex normal data, we can use Poisson reconstruction [42]. If the input contains a lot of internal

structure we may also use the shrink-wrapping approach from Chapter 2.

(4) The triangulated reduced geometry will then be optimized according to the view frustum (see Section

3.1.3).

Figure 4.2: Comparison of the

original textured mesh (left),

geometry-based (middle), and

image-based simplification (right)

with displacement heatmaps.

Image credit: Lindstrom et al. [49].

This pipeline can then be implemented as an extension to MeshLab

(see Fig. 4.1). The simplified mesh can then be rendered in the application

viewport and stored as backup on hard drive. Moreover, the complex

files can be stored at different LODs on disk, including the entire vertex

hierarchy forest (see Section 3.1.1).

We intend to test this approach for meshes with 50M triangles or

more, including some procedurally generated fractal geometries. It is also

important to leverage the initial preprocessing stage with multithreading,

while also informing the user about the progress of this process.

4.2 Refinement Based on Texture Data

An additional technique which may be integrated into the processing

pipeline for large meshes is the utilization of a subset of the mesh space

{M} which incorporate texture data according to perceptual criteria. If

I :M → [0, 1]4 is a texture defined on the mesh surface, there could be

varying criteria for the quality of triangulation based on different color

channels.

From the work of Hoppe on progressive meshes (see Section 3.1.1)

other researchers have explored various extensions and improvements to

the progressive mesh framework, including those that incorporate texture

data into the refinement process.

Lindstrom et al. proposed a method for simplification based on multi-

ple views of a textured mesh [49]. Late Sander et al. provided a framework

for properly mapping texture data onto Hoppe’s progressive meshes [61].

The latest advances in differentiable rendering [27], on the other hand

push this development to the limit.

4.3 Using FReps for Scene Optimization

The conversion of the entire scene with high-poly meshes to an en-

tirely volumetric form is perhaps the hardest challenge of the ones stated in this chapter. The process of

voxelization, which involves converting a mesh into a volumetric representation, is computationally intensive

1A C function for mapping between address space of a process and a given file.
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Figure 4.3: The distance field to a free palace mesh [75] with 1M triangles and 500K vertices on a grid G with

resolution 6003 completed in about 21 seconds on AMD Ryzen 7. The exported voxel .vti file (ASCII) has 1.1 GB.

and requires a significant amount of memory (see Fig. 4.3). Fitting a set of basis functions onto a dataset of

mesh vertices while maintaining a high level of detail [76, 47] is another challenge we face. Both performance

and memory optimization will be crucial in tackling this challenge. Therefore, finding a balance between

maintaining a high level of detail and optimizing performance and memory usage will be a significant hurdle

in our research.

Firstly, we will need to leverage the bottlenecks for preprocessing speed with high-performing solvers for

basis function fitting. This will require us to identify and leverage bottlenecks in the process and fine-tune

our approach to ensure the most efficient use of computational resources.

In addition, it is crucial that we find a way to maintain a sufficient amount of detail within surface meshes

while still fitting them to our volumetric representation. Preserving details within the mesh is important,

as it can greatly affect the quality of the final result. We will need to explore different approaches to ensure

that the mesh retains its integrity while still being converted to a volumetric form.

Overall, our research will require a balance between preprocessing speed, high-performing solvers, and

mesh detail preservation. Finding an effective and efficient way to manage these factors will be essential to

achieving our goals.
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[5] Čavarga, M. Advection-driven shrink-wrapping of triangulated surfaces. https://cescg.org/cescg_

submission/advection-driven-shrink-wrapping-of-triangulated-surfaces/, 2022.
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